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PREFACE 

This report represents the notes of an advanced course which the writer hac offered 

at the Massachusetts Institute of Technology during the first semester of the academic year 

1952-53.    A continuation of this course during the second semester will deal with the elec- 

tronic structure of solids,  treated from the same general point of view,   and it i«= hoped that 

a companion report will be issued later,   representing the notes of the second iprm1; work. 

The course was intended for students who had already taken a first course in the quantum 

theory of atoms,  molecules,  and solids,  and has carried many aspects of the field up to the I 

limits of what we now know.    It was designed very much with the needs of tnose going into the 

Solid-State and Molecular Theory Group at M. 1. T.   in mind,   and the notes which form the 

present report are lr.«ended for guidance of those starting research along the lines now being 

pursued by that Group.    It was felt that the readers of the Quarterly Progress Reports of the 

Group might well be interested in this material,   which presents in a more connected fashion 

many of the ideas which have been mentioned in a. cursory way in the Progress Reports,  and 

for that reason these notes have been collected into a Technical Report,   which is being sent 

to the same distribution list as the Quarterly Progress Reports. 

It should be emphasized that this does not In any way represent a finished book on the 

subject.    The typing and planographltig have gone ahead in parallel with the writing,   so that 

there has been no opportunity to revise earlier parts of the notes to take advantage of ideas 

presented in later sections.    In many cases the writer's ideas have become changed or clari- 

fied as the writing,   and the giving of the course,   have proceeded.    In many cases problems 

have been talked over with rr      *~  <*s of the Solid-State and Molecular Theory Group,   and a 

great deal of thanks is due to many of them for help in clarifying or In originating some of 

the ideas.    In spite of the preliminary nature, nevertheless, the subject is advancing at such 

a rate that the writer feels thai a presentation such as this will help speed up the progress, 

both at M. i. T.,   and at other places where similar work is under way. 

It will be clear to the reader that the material presented here is not In any sense an 

explanation of molecular structure on the basis of quantum mechanics.    It Is rather an ex- 

ploration of the methods by whi'h quai turn mechanics can hope to solve the problems posed 

by molecular structure.    Only when these methods are better understood,   by the siuuy of the 

sort of simple molecules treated here,  can we hope to proceed to more complicated cases. 

The writer feels that the understanding of chemical problems according to the quantum theory 

has been set back,   rather than advanced,   hy the great desire which many scientists have had 

to derive numerical results on the basis of inadequate approximations and unjustified use of 

simplified theories.    It Is his hope that,  by encouraging a more careful study along the lines 

of those outlined here,   we mny eventually find what sort of simplifications really are justi- 

fied,  and thus be led eventually to a theory of the more complicated molecules which is at 

the same time simple enough to use and to understand In a qualitative way,   and yet accurate 
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enough and well enough based on th€ quantum theory tr> be reliable.    He does not feei tha* the 

theory of molecular structure has yet reached that fortunate state. 

Join C.   Slater 

Cambridge.   Mass. 
February,   1953 
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1M.  Born and J.  R.  Oppenheimer,   Ann.  Physik 84,   45? (192.7);  for a simplified treat- 
ment of this result,  see J.  C. Slater,   Quantum "Theory of Matter (McGraw-Hill,  New 
York) 1951,   pp.   500-501.    Future references to this WOTK will be merely indicated as 
QTM. 

^For the meaning of this spin coordinate,   see QTM.   pp.   187-192. 

For these units,   see QTM    p.   110.    Note that they are differ*":** 'rom the atomic units 
used by hartree and his school,  in which the unit of energy Is two Rydbergs.    H&rtree's 
choice of units removes Me factor Z In the potential energy terms   n Eq. (1. 1),  but in- 
troduces a factor 1/2 in 'he kinetic energy term. 
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CHAPTER ! 

THE DETERMINANTAL METHOD FOR ATOMS 

In these lectures we shall treat the problem of the motion of n electrc~.r,   under 

the action of their irutual Coulomb repulsions,  the attractions of the nuclei of the atoms 

of the system,  and sich mutual magnetic forces,   and external electric a'id magnetic 

fields,   <is may be prvs^nt.    Nuclei will be assumed to be fixed in position,   so that the 

energy levels cf the system will be functions of the nuclear positions,   regarded as pa- 

rameters.    According to the fundamental theorem cf Born and Oppenheimer, ' ' these 

energies can then be used as a potential function for a treatment of the motion of the 

nuclei     It is justified to separate electronic and nuclear motion in this way.  up to a 

certain approximation.    The approximation breaks down where the nuclei are moving 

so fast that their interaction with the electrons is able to cause electronic tr?nsitions 

from one electronic stationary state to another; but w» neglect such problems in these 

lectures. 

We let the three space coordinates of the i     electron be symbolized by x ,  and its ; 
(2) l 

spin coordinate by s-.    '  We let tha wave function of the n electrons be lUxjS.x^s^ 

x_s_),  where we assume that the time has already been eliminated.    Then,  if we disre- j n n * 
gard magnetic terms (as we shall almost always do),  and if we have no external fields, i 

the Schrodlnger equation for U is 

{Z(D (- Vf) -£(i. •)(•?—) • X (pairs i,j)(J-) • Itpairsa.b)}-^)}!! = EU.    (i-1) 

i 
Here we have used atomic units,  in which the unit of length is the Bohr radius of hydrogen, 

f'1 2 
and the unit of energy is the Rydberg. *""'  The Laplacian operator -V. ,  operating on the 

i h ' 
coordinates x, is the kinetic energy of the I  * electron.    The term - 2Z Jr.  ,  where Z 

th th 
is the charge on the a     nucleus,  in electronic units,  r.    is the distance from i     electron 

i h t h t h 
to a    nucleus, is the Coulomb attraction between i     electron and a     nucleus.   The fac- 

tor 2 arises from the atomic units.   The summation is over all n electrons,  and over all 

nuclei.   The next term, the summation of 2/r.,,  represents the Coulomb repulsions be- 

tween all pairs of electrons.   The final term,  th«! summation of 2Z Z^/r .,  represents 

the Coulomb repulsions between nuclei.   Since the nuclear positions are regarded as fixed, 

it is a constant as far as Schrodinger'«• equation is concerned,  but we shall need it when 

we consider the total energy of the system.   We shall call the complete Hamiltonian oper- 
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THE DETERMINANTAL METHOD FOR ATOMS 

ator on the left side of Eq.  (1. i) H. 

Our whole problem in these lectures is the solution of Eq.  (1. I).    Except in the 

simplest c*ses,   it is hopeless to consider an exact solution,   and we are forced to approxi- 

mations.    The determinantal method,  ibr subject of our lectures,   represents the most 

generally useful of btch approximations.    Before we introduce it,   let us thoroughly ccn- I 

vince ourselves that an exact solution is impossible.    Surely we cannot hope for an analytic j 

solution,   so that we are at once forced to consider numerical solutions.    Our wave func- 

tion,  disregarding spin,   is a function of 3n variables.    But no one of the high speed com- I 
i 

put.ng machines now available or contemplated can solve partial differencial equations 

with more than two variables.    Thus no such machine could compute our function.   The 

limiting factor in these machines is storage of information,  and this same factor would ] 

limit our numerical calculation of the wave function U,  no matter what method of com- 

putation were used.    We can hardly make a usable table of values of a function of one ! 
i 

variable with less than 100 entries.    For a function of 3n variables, then,  we should need 

a table with (100)       =  10 n entries.   That '.?•  for one particle we should need a million 

entries, for two particles 10    ,  and so on.    All the books in the world would not be enough i 

to write down the wave function for a single heavy atom, and all the magnetic tape we can 

conceive of would not record the information.    The direct approach to a numerical calcula- 

tion of a Schrodinger equation for an atomic or molecular system is,  then   completely 

impossible.    We must look for other methods of handling It. ! 

Our best hope Is to express the wave >unction approximately.  In terms of a number 

of functions of s smaller r umber of variables,  which we can either tabulate or express 

analytically.   The determinantal method expresses the function U In terms of a number 

of functions u. of the coordinates of a single particle,  a-.d of spin.    These functions u. are 

called one-electron functions, or orbltals.    We have seen that a minimum of a million 

entries In a table would be required to express a function of three variables,  and while 

this Is an appalling thing t« contemplate,  it Is not completely out of the question,  and may- 

be someday such functions will bt handled numerically.    For the present,  however,  we 

cannot handle them numerically,  and must use partly analytical methods.    The thing that 

is almost always done In practice Is to assume that the u.'s are linear combinations of 

solutions of a one-electron Schrodinger equation for a central field problem,  which we 

know by ele.nentary methods are products of a spherical harmonic of angle,  and a func- 

tion of the radius vector.    This function oi the radius vector must be determined numeri- 

cally,  if we are dealing with an arbitrary central field problem, but we are left with a 

function of only one variable to work out and write down numerically.   and this can be done 

with 100 entries in a I able,  or actually very satlsiactorily with some 300 entries.    It is 

then no problem at all to deal with a number of such functions of radius.    Quite a number 

oi' sith functions 'are needed, but '.he number Is comparable with the nvr-.bor of electrons 

in ths problem,   or in tic case of a lame sample of matter,   comparable with the number 
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1.  HISTORY OF THE DETERMINANTAL METHOD 

of electrons in an atom rather than in the whole sample.   The necessary numerical in- 

formation to express an approximate solution of a problem by this method is no more 

than can go into a journal article of moderate size.    We shall now go on to st-'*e the de- 

ternanan.tal met'iod,  which leads to this great simplification, but at the expense of giving 

only an approximate solution. 

1.   History of the Determtnantal Method 

Before stating the details of the determinants method, it is worthwhile giving a I 

little of Its history,  and of the history of the whole effort to solve the many-body problem 

in quantum mechanics.   This history begins in the time of the older quantum mechanics, 

before 1926 when the wave mechanics was developed.    After Bohr's success in 1913 with 

the theory of the hydrogen atom,  it WVJ only natural that the thoughts of many physicists 

turned to the problem of heavier atoms.   An inherent difficulty arose at once.   The older 

quantum theory was based entirely on classical mechanics:   It postulated that particles 

obeyed classical mechanics, but with quantum conditions superposed on It.   These quan- 

tum conditions were stated in a form applicable .only to motions of a multiply periodic I 
(4) 

character.    '   And yet enough was known about classical mechanics to realize that th» 

many-body problem did not have multiply periodic solutions,  aside from very exceptional 

cases.    Fruitless attempts were made to set up models of light atoms,  particularly helium, 

which would have multiply periodic motion; for instance,  a model of helium consisting of 

two electrons rotating at opposite en-is of a diameter in the same circular orbit.   A num- 

ber of such models were tried,  none leading to anything like agreement with experiment. | 

It was clear that something radically different was needed. 

The radically new idea came from Bohr.   It had already become clear, by much 
(5) study of optical and x-ray spectra on the part of a great many workers,v ' that many of 

the facts of spectroscopy could be interpreted if we identified the energy levels with those 

of a single electron moving in a central field,  such as would be set up by the nucleus and 

a collection of electrons surrounding <t.    Bohr* ' took the radical step of assuming that 
an electron In a penetrating orbit moved all the way r- om the outer to the Inner part of 

the atom,   ploughing Its way through inner electrons orbits,  and that still ilic other eltc- 

4These quantum conditions,  and the older quantum mechanics,  are developed In the papers 
of Bohr and Sommerfeld in the l??.0's.    A very good and complete account of the theory, 
published just before the wave mechanics was developed,  is given in M.  Born,   Vorlesungen 
uber Atommechanik.  Vol.   1 (Springer,  Berlin) 1925. 

5Thls development Is well described by A.  Sommerfeld,  Atonibau und Spektrallinien. 
Fourth Edition (Vieweg,  Braunschweig) 1924.    The Third Edition,   1922,   was translated 
into English and published by Dutton under the title Atomic structure and Spectral Lines. 

6N.  Bohr.   Z.  Physik Q.   1 (1922);   Ann.   Pnysik 71,   228 (1923); The Theory of Spectra 
and Atomic Constitution (Cambridge Univ.;rri«y~Press) 1922 (SecnncTLcuonr  1924); 
NT"T?Sm"ana OT'Ccster,   Z    Phys.   12,   342 (i9i3). 
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7E.  Schrodingcr,   Z.  Physix 4,   347 (1921). 
8E.  Fues,   Z.  Physik U,   3t>4 (1922); J_2,   1 (1922);   L3,   211 (1923). 
9T. van Urk.  Z.  Physik 13,  268 (1923). 
10D.  R.  Hartree,  Proc.  Cambridge Phu.  Soc.  2L  625 (1923). 
llY.  Suglura and H. C.  Urey.  Kgl.  Dan ike Vldenskab. Selskab,   Mat.-fys.  Medd.   7, 

No.   13 (192*>). 
12R.  B.  Lindsay,  J. Math.  Phys.,  M.I.T.,   .[,   191 (1924). 
iJ*:. Schrodinger,   Ann.   Physik 79.   361,   •*»<; \1926);   80,   437(1926);   81,   109(1920; 

Phys.  Rev.  28,   1049 (1926). 
14D.  R.  Hartree,   Proc.  Cambridge Phil.  Soc.  24,  89,   111 (1928).  and many further 

papers which will be referred to later. 
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THE DETSRMINANTAL METHOD FOR ATOMS 

trons exen.ed a field on it qualitatively as if they were arranged statically aro-md the nu- 

cleus.    This was clearly entirely outside the framework of the simple multiply periodic 

orbits that had been contemplated by the quantum theory up to then,   and from ihe time oi 

these suggestion?; it was clear to physicists that the older quantum theory could not be 

correct for si'ch problems.    But the picture qualitatively led to many valuable results: I 

the structure or the periodic table,   the nature of the x-ray levels,   and the general under- 

standing of optical spectra. i 
Bohr did not try to set up a self-consistent field,  though the general .dea was plainly 

in his mind.   Several other workers made efforts in this direction, however,  during the 

period of the older quantum theory.    Thus calculations were made by Schrodinger,     ' 

Fues, * ' van Urk. ^' Hartree, ^l0' Suglura and Urey. K    ' and Lindsay,       ' all trying to , 

set up potentials for central fields in which a moving electron would have term values 

agreeing with observed values.   They succeeded very well for several simple spectra, 

and the resulting fields are close to those which we now know as self-consistent fields for 

the same atoms.   They fully realized the desirability of self-consistency; that is, of de- 

riving the potential from the charge distribution of the electrons.    Fues and Lindsay made 

some efforts to carry out the requirement of self-consistency.    However,  with the older 

quantum mechanics,  in which the electrons moved in discrete orbits,  it was obviously a 

very artificial mat:er to average out to get a central field,  and this made ail efforts at 

self-consistency very unsatisfactory. 
(13) I This situation was entirely changed,  however,  as soon as Schr5dingerv    ' introduced 

the wave mechanics.   Then It became clear that the inner electrons really had a continu- 

ous charge distribution,  and it was a very obvious step to determine the potential of this 

charge distribution, and to assume that the outer electron moved in this potential field. i 
(14) Hartreev    ' returned to the problem immediately,  and started his long series of self- 

consistent field calculations, assuming that each electron moved In the field of all other 

electrons of 'he atom,  averaged over directions to gel spherical symmetry.   He found, 

as is well known,  one-electron energy levels in very good agreement with observed term 



1.   HISTORY Or THE DETERMJNAK'TAL METHOD 

vai>«*«,   both optical and x-ray,   anr* wave f motions whose correctness could be checked 

by computing x-ray fcrrr. factors and in various other ways.    Hartree's procedure was 

set up intuitive;/,   not as a result of any straightforward efiort to solve the many-body 

Schrodinger equation,  but it was clear that it gave on»-electron wave functions for the 

various electrons which had some very clos.? connection with the real solution of the prob- 

lem. 

The present writer*    ' tried to investigate this connection in the following way. 

Hartret had found one-electron functions u, for the various electrons.    The present writer 

set up a product of such functions,   each referring to a different electron,  as u.(x.)u2(x2) 

.  . u («_). to represent a many-dimensional wave function.    If the electrons were really 

statistically independent of each other, acting on each other only on the average,  this 

would be a correct wave function.    He then allowed the Hamiltonian operator H for the 

atom,  as given in Eq. (1.1),  to operate on this wave function,  and found the diagonal 

energy, the integral   / U*HUdx. .  . dx .  which should represent the energy of the sys- 

tem.   This energy cannot be checked experimentally,  in most cases, but the ionization 

potentials can.    Thus we must calculate also the energy of the ion with one electron re- 

moved.    The writer used the same orbitais for the ions as for the atom,  simply omitting 

the function u. (x. ) referring to the electron removed,  and calculated the energy of '.he ion, 

making an estimate of the error Involved In using the same functions u. for ths inn as for 

the atom,  in spite of the fact that there should realty be some rearrangement of ..narge 

in going from the atom to the ion,  and hence some modification of the wave functions. 

This change, being a first-order change in the wave functions, makes Only a second-order 

change in the energy, by elementary principles of perturbation theory,  and these second- 

order corrections were estimated.   The final result was that the ionization potential,  as 

calculated by this correct method involving the wave function and energy operator of the 

whole atom,  should agree closely with the one-electron energy parameter,  as Hartree 

had found that it dfcl.   This was an anticipation of the result of Koopmans, v    ' derived 

from the Hartree-Fock method,  which we shall discuss later.    It might be mentioned that 

in the paper by the writer just referred to,  corrections for exchange were considered, 

as derived on the basis of the group theory, though they dc not follow directly from the 

product form of wave function u.(x.) .  . u (x ), and though the determinants form of 

function was not yet In use for this purpose. 

To follow our history of the determinant method,  we must now go back and con- 

sider another development which started out quite separately from the solf-conststent 

field method,  namely the theory of complex .->^ectra,  and the electron spin and exclusion 

principle which were closely entwined with it.    During the time up to 1925,   the theory of 

15J.  C.  SlMer,   Phys.  Rtv.   32,   339(1928). 
l6T. Koop.nans,   Physlca 1.   104 (1V33). 
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THE DETERMINANTAL METHOD FOR ATOMS 

complex spectre,   as described for instance in the work of Sommerield referred to earlier, I 

made very great progress.    Regularities were discovered,   particularly by use of the Zee- 

man effect,  quantum numbers were introduced,  the Lande interval rule and various other 

partial formulations of the problem were introduced,   on the basis of simple ideas of i>pace i 

quantization.    But up until 1925,  great puzzles and complications were present in the 

theory,   on account of the fact that the electron spin had not been di^coversd,   and the ex- 

clusion principle had not been formulated.    Thus Bohr,  in his theory of the periodic sys- 

tem given in the papers to whicn ;v» have referred,   did not have the exclusion principle 

to work with,   and in fact he gave an incorrect value for the number of electrons in a 

closed shell of any particular azimuthal quantum number,  and did not have any convincing 

explanation as to why we should have closed shells at all.    The incorrect assignment of 

electrons to shells was soon removed by Sto.icr,'     ' who arrived from x-ray evidence 

at the assignment of two electrons to a shell of s electrons,  six to a p shell,  ten to a 

d shell,  and so on.  which we now know to be correct.    He still did not have a convincing 

reason for these numbers, however,  and it remained for Pauli, *    ' in 1925, to make his 

famous postulate of the exclusion principle.    He still was no* working with the theory of 

ihe spinning electron,  however;  his statement of the exclusion principle is in terms of a 

fourth quantum nunihsr,   in addition to the ordinary three quantum numbers of orbital mo- 

tion, whose significance was not clear at the time, though it had been found necessary to 

introduce it tc describe the spectra.    Almost simultaneously, Uhlenbecx and GoudsmiP    ' 

introduced the postulate of the electron spin,  and the basis for the elementary theory of 

complex spectra was laid. 

It is very interesting to see how rap dly and completely spectrum theory developed, 

once it had these foundations, on the basis of th» vector model,  but without wave mechanics. 

Thus Hund:s'    ' book, though it was published just after wave mechanics was introduced, 

makes almost no use of it; but it contains a description of the theory of complex spectra 

•.vhich kS subsxcntially like that in use at present,  including complete discussion of the 

multiplets forbidden by the r.xclusion principle,  and such matters,  but not including the 

calculation of energy levels.    It was a much .'.lower process,  however to make a synthesis 

of this theory and of -vave mechanics.    The first very important step in this direction was 

taken by Helsenberg. *    '   He considered the behavior of a system consisting of two like 

particles.    If tnesc are first considered independent of each other, one will be described 

17E.  C  Stoner.   Phil.   Mag.  48,   719(1924). 
18W.  Pauli,  Jr..Z.   Phys?k3j..   '65(1925). 
l9G.  E.  Uhlenbeck and S. Goudsmit,  Nnturwiss.   L3-   953(1925) 
2®F.  Hund,  Linlenspeklren und perlodiscnes Svstem der Elemente (Sp>-tnf»cr,  Berlin) 

1927. "  
2lW.  Helsenberg.   Z.   Physik 38.  411 (1926);   39,   499 (>-">).   41,   239(1927). 
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1.  HISTORY OF THE DETERMINANTAL METHOD 

by & wave function u,(xj),   a function of the coordinate x. of this particle,   and the other 

will be described by u,(x,)     The product cf these two will represent a wave function for 

the system.    Heisenberg thea considered the effect of an interaction between the two par- 

ticles,  treated as a perturbation.    He noted that there are two unperturbed functions, 

UJ(XJ) u2(x2) and u,(Xj) u,(x,),   which on account of the identity of the particles are de- 

generate with each other,  and he showed by the theory of perturbations of degenerate 

systems that in tht perturbed problem the correct wave functions* were the "yrr.metric and 

antisymmetric combinations u.{x.J u2^x2^ *  u2^xl^ ul^x2^'   an{* that the «->ergles ot the 
two resulting functions differed by an amount depending on the exchange integral 

/uf(xj) u*(x2) H u2fxj) u,(x,) dxjdx2 

**here H was the Hamiltonian operator of the problem.    He also snowed, but by ? rather 

complicated way, that the symmetric function was to be associated with a singlet term 

In the spectrum of an atom containing two electrons,  and the antisymmetric function with 

a triplet. 

In this Important work, Heisenberg laid the foundations for three later developments: 

thi theory of complex spectra,  which we shall take up at once; the theory of covalent bind- 

ing,  which Heitler and London'    ' were soon to set up on the basis of Heisenberg's funda- 

mental work; and the theory of ferromagnetism,'     ' which Heisenberg himself set up. 

The theory of complex spectra,  on the basis of wave mechanics,  however,  did not develop 

as fast as one might have hoped.    In one of Heisenberg's papers,  quoted above,  he started 

the generalization of the problem of two electrons to the problem of many electrons.    He 

had realized In his first paper the relation between an antisymmetric function and the ex- 

clusion principle,  and he generalized this in the later paper by setting up an antisym- 

metric combination of the orbltals u. .   .  u_ of an n-electron problem, forming a deter- 
(24) mlnant (though he did not write it in determ inantal form).    At the same tim'.-, Dtracv    ' 

had independently arrived at the <mme results as Heisenberg regarding the symmetric 

and antisymmetric solutions In a problem of two particles, the use of a determinantal 

function tc express the antisymmetric combinat'on In a problem of n electrons,  and its 

relation to the exclusion principle.    But the reaocn why these generalizations did not 

proceed faster was the complication Introduced by the electron spin. 

The wave functions which Heisenberg and Dlrac were using were functions of co- 

ordinates alone, not of spin; Pauli' ' had not yet introduced his spin matrices, which 

gave a practical method of setting «p wave functions Including spin.    Heisenberg realized 

22W.  Heitler and F. London, Z.  Physlk 44,  45b (1927). 
23W.   Heisenberg.   Z.   Physik 49,   619(1928). 
24P. A.  M. Dirac,  Proc.  Roy. Soc.  (London) m.  661 (1926). 
25W.   Pauli.   Jr.,Z.  PhysiW 4_3,   601(1927). 
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THE DETERMINANTAL METHOD FOR ATOMS 

that in a case where all spins were parallel.   :. single determinant of orbltals formed the 

correct antisymmetric wave function; but the idea of antisymmetry in cases where some 

spins were pointing one way,  some the other,  could not be easily introduced.    Lac King 

th*».t,  Helsenberg was forced to consider the general behavior c? a combination of products 

of orbltals under a permutation operation: the antisymmetric combination changes sign, 

the symmetric combination is unchanged, but other combinations can be transformed into 

each other.   This led naturally to a discussion by means of the group theory,  as applied 

to the permutation group.   This resulted in a great development of the group theory,  In 

which Wlgner, ^ Hund. *27) Heitler, *28) and others took part,  as well as Helsenberg. 

The development was complicated, but not fruitful.    Those engaged in it became immersed 

in their inamemaucs   and fati<:d to make connections with the theory of complex spectra 

already so well developed from the vector model point of view.    The step which they were 

missing was the combination of Pauli's treatment of the spin,  and the determinantal meth- 

od of setting up antisymmetric wave functions. 
(29) This missing step was supplied by the present writer In 1929.v    '   In this paper, 

one-electron wave functions were set up which involved spin, using the general ideas of 

Pauli,  as well as coordinates.   Every wave function allowed by the Paull ex^lu^on prin- 

ciple then had to be an antisymmetric combination of one-electron functions,  so that every 

such function could be written as a determinant, 

UjfxjSj) Uj(x2s2) 

u2(x,8l) u2(x2s2) u2<xnsn> 

un<xl«lWx282> un<Vn> 

(1.2) 

Each such determinantal function could be Identified with one of the assignments of quan- 

tum numbers to electrons, which was the basts of the methods already developed for 

treating complex spectrum theory, *    ' and It was possible to take over the whole if that 

theory bodily i"to the framework of wave mechanics.   It was also possible, In addition, 

to go much further,  for now the matrix components of energy with respect to a set of de- 

terminantal wave functions could be computed,  and the secular equations solved,   yielding 

the correct combinations of determinants to represent the various actual stationary states 

of the problem.    In this way the energy separations of the various tei r.is could be computed. 

26 

27 
E. Wlgner.  Z.  Fhyslk4£,  492(1926):  40,   883(1927). 

F. Hund,  Z.  Physlk 43,   788 (1927). 
28W. Heitler,  Z. Physlk «6,  47 (1928). 
2*J. C. Slater,   Phys.  Rev.   34,   1293 (1929J. 
30These methods are described,  for instan-.e.  li. Hund's book alreaOv quoted;  they arc 

taken up in QTM.   *.p.   '58-182. 
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2    TitiE DETERMINANTAL METHOD 

The connection with Hartree's self consistent field was obvious:   the cne-electron func- 

tions i. were chosen to be e product of a Hartree function of coordinates;   ttnd a Fauli 

function of spin.    With this development,  the cieterminantpi method was complete,  and It 

has formed the basis of most subsequent development of the theory of atoms, molecules, 

and solids,  as \vc shall later deso lb*.    It should be mentioned,  however,  that at about 

the same time,  Dirac*    ' approached similar problems from a different point of view, 

which yielded results which can «dso be used to discuss the same type of problem.    We 

shall make little use of these methods of Dirac in the present lectures, but they have 

been taken up to a considerable extent by the workers in the theory of magnetism. 

2. The De'termlnar.tal Method 

The determinantal method is very simple in principle.    We set up a number of de- 

terminants of the nature of that given in Eq.  (1. 2),  and try to make a linear combination 

of th»m which equals the correct wave function of the problem,  or solution of Eu..  (1. 1), 

to an adequate approximation.    There are then two major problems connected with the 

method.   The first Is how to set up the determinants in the first place; that is,  what or- 

bitals u, to use.   The second is,  having set up the determinants,  how to find the correct 

linear combination of them.    This second question is straightforward,  end the answer is 

obvious from elementary quantum mechanics.    We find the matrix of tne energy operator 

H,  of Eq. (1. 1), between the various determinantal functions,  and ihen make linear com- 

binations of these functions which dlagonalize the energy.    The problem is only w? com- 

pute the matrix components of energy; then the rest of the work is straightforward,  in- 

volving the solution of a secular equation.    The first question,  the determination of the 

proper orbit als u., however, Is much more subtle and difficult.    We shall have a good 

deal to say about It In the future.   Before passing on to the second question,  however,  It 

will be worthwhile to indicate some of the factors underlying the choice of the u,'s. 

In the first place   we must answer the question,  whether to approximate our solu - 

tion by a single determinant, or to use many such determinants.    For a problem In which 

all electrons are In closed shells,  a passably good approximation can be made using only 

a single determinant.    For problems in which there are multlplets arising from electrons 

outside closed shells, this cannot be done at all,   and we must use a combination of a 

number cf determinants.    In any case,  a single determinant, or a few determinants,  will 

not gW< <* good approximation, for the true wave function certainly does not take this 

fcrm,  on account of the large Interaction between electrons.    If we wish to do our best 

with a single determinant,  however,  then we have a straightforward way to choose the 

u.'s:   we make use of the variation principle, by which It can be shown that the true wave 

functions of the problem are those for which the energy Integral  / U* HU dXj .  . dx   Is 

3iP.  A.  tf.    Direc,   Proc.  .Hoy.  Soc.  (London) 123,   714(1929). 
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stationary,   when we vary U,  provided V <3 kept noirnalized.    We can interpret this as 

meaning that If we start with a single d«»termlnantal function for U,  and vary the u.'s,   we 

shall get ihe best approximation to the tru* wave functions if we make the energy integral 

stationary with respect to variations of the u.'s,  and in particular,  the west approximation 

to the ground state is obtained if the energy integral is minimized.    This condition leads 

to the Hartret-FooW equations,   which we shall discuss in a later section.    Since Ihey deal 

with only a single determinant junction,  containing just n orbitals u.,  this method de- 

termines only those n orbltals,  and does not lead to any method of finding additional ones. 

Quite a different problem arises if we are willing to use a combination of many de- 

terminants.    We can see this by considering the limiting case,  where we are willing to 

use an ir-fir.i'.e number of determinants.    These can be chosen to form a complete orthogo- 

nal set of n-electron antisymmetric functions of coordinates and spins.    This can be ac- 

complished by making the set of u.'s a complete orthogonal set of one-electron functions. 

Then by general principles of quantum mechanics we know that any antisymmetric function 

of the coordinates and spins of n electrons can be expressed as a linear combination of 

such a complete orthogonal set,  so that our problem can be solved exactly, and it makes 

no difference what complete orthogonal set we use.   Of course, this limiting case of an 

infinite number of determinants does not concern us in practice.    What we may well be 

interested in,  however,  is the problem of finding a finite number of determinants,  such 

that an appropriately chosen linear combination of them forms a very good approximation 

to the solution of the problem. 

The choice of this finite set of determinants is a matter of insight,  and we shall 

have much to say about it in the future.   Briefly, however, ii we choose the u.'s to repre- 

sent eolations for the occupied,  and lower unoccupied,  levels of the atoms, then the linear 

combination of determinants will represent a problem of interaction of a few lower con- 

figurations of the problem, ana the wave function arising in this way may be expected to 

be fairly gcod,  at least when our major interest is in the energy differences between the 

states of these configurations.    Let us suppose that, by such arguments,  we have set up 

a number oi determinants.   Then our problem is to solve the secular equation arising 

from these determina-.tal functions.    We may reduce the order of this equation a good 

deal by taking full advantage of the symmetry 2r"i «*ultlplicity properties of the wave func- 

tions;  we shall find in many cases that there are ni» non diagonal matrix components of 

energy between determinants functions of different symmetry and multiplicity properties. 

But we are still likely to be left with secular equations of rather high ord >r to be solved. 

Three methods may b» thought of for solving these secular equations.   In the first 

piece,  In the origin.. 1 paper on complex spectra,  by the present writer, much use was 

made of the diagonal sun, rule,  and similar subterfuges,  which made the direct solution 

of the secular equation almost unnecessary.    Such devices are avaliabl** in slir.pl>* cusrs, 

but we must not count on them,  and shall net stress the.A in these lectures.    Secondly, 
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2.  THE DETERMINANTAL METHOD 

there is the well-known method of perturbation theory.    This, is appropriate if ore of the 

determinantal functions is a very good approximation to the solution we are seeking,   and 

the others appear only with very small coefficients in the final combination.    This situa- 

tion can sometimes be achieved,  but again we cannot count on it.    Finally we are left with 

the straightforward method of the numerical solution of the secular equation.    Until very 

recently,  this w»s so difficult as to be out of the question.    Now,   however,   with the rapid 

development oi high-speed digital computers,   it becomes possible.    Secular equations 

involving up to twelv? determinants have recently been solved by this method,'     ' and the 

computers are improving so rapidly that it will not be long before conslderaDly greater 

secular equations can be attacked.   One gets the feeling,  therefore,  that the future develop- 

ment of the method is likely to use more and more determinants,  and to rely completely 

on high-sp^ed computers to solve the resulting secular equations. 

The final result of the solution of such a secular equation is a set of energy values, 

and of transformation coefficients for finding the correct wave functions as linear com- 

binations of the original determinantal functions.    This is a rather small set of numbers, 

and if the orbltals out of which the determinantal functions are computed c?a be described 

analytically,  or numerically by simple tables of values,  we have reduced the problem of 

describing the wave function, from the formidable proportions mentioned earlier,  to a 

n     •-geabl*» seal';.    If we use this method, there is no particular advantage in having one 

'A th». _-.terminates of our set represent the wave function to great accuracy.    We can 

jusi as well use a linear combination in which many wave functions have coefficients of 

large size.    The essential feature of the u.'s, in this case,  is that the whole set of deter- 

minants formed from 'hem should be capable of describing the correct function with good 

accuracy.    We can state th<9 criterion more clearly If we remember thai a wave function 

can be represented as a vector in a function space of. an infinite number of dimensions. 

Suppose we have N determinantal functions.    If they are linearly independent  they will 

define an N-dimensional sub-space In this function space.    We may now supplement our 

N vectors with an Infinite set of others,  orthogonal to all the N we started out with,  so 

that all taken together will form a complete set.    Now our wave Junction,  which we are 

trying to determine,   is also represented by a vector     This can be represented exactly 

as a lineai combination of our original N vectors,   provided its scalar product with any 

one of the additional vectors of the complete set,  not included in the original N,  is zero. 

That Is,  In this case the vertor lies In the N-dlmensional sub-space defined by our vec- 

tors.    This Is the situation we try to achieve by our choice of a finite number of deter- 

rulnant&l functions.    If we have almost achieved It,  that Is.   if the scalar products of the 

correct vector with ail vector* not In our original set of N  pre small,  then we shall have 

"A.  Meckler,   Ph. D Thesis.   M.1T..  September,   1S52.   Quarterly Progress Report. 
Solid-State and Molecular Theory Group,   M. I. T. ,  July 15,   1932. 
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THE DETERMINANTAL METHOD FOR ATOMS 

a good approximation.    As we have said,   it is a mc.tter of insight to choose our N J:t..r- 

minants to achieve this situation,   anci we shall give much discuss'•• . as we go vt: lo meth- 

ods of doing it. 

Let us suppose such a set of determinants to be set up,   however,   and now let us 

address ourselves to the other part of our problem,   that of determining the correct linear 

combinations of determinants     To do this,  as we have mentioned,  we must find the non - 

diagonal matrix components cf the Hamiltonian with respect to these functions,   and s?t 

up the usual determinantai equation between them.    At the outset,  we observe one thing: 

our procedure will be very greatly iimpliiied if the determinantal functions are orthogonsu 

to each other.    This simplification »s just like that found in algebra and analytic geometry, 

in which it is very easy to manipulate problems if they are expressed in rectangular co- 

ordinates,  but very complicated in an oblique coordinate system.    The equations car be 

set up in non-orthogonal systems,  and they have been so set up;v    ' but they have almost 

never been used,  and in actual applications it has almost always been assumed that the 

departures from orthogonality are small,  and these departures are then neglected.    This 

is not justifiable.    We shall prefer to use determinantal functions which are really or- 

thogonal,  and to use these rigorously.    We shall set up our equations only for this case, 

and shall carefully avoid all use of non-orthogonal determinants,  unless we specify other- 

wise In special cases. 

It is easy to prove that all our determinantal functions will be orthogonal '•> each 

other,  provided every one-electron orbital appearing in any one of the c'.eierminants is 

orthogonal to every other one;  and we shall generally make this assumption.    There are 

a number of consequences from this assumotion,  which we might not quite realize at first, 

and a number of comments to be made about it.    In the first place,  it excludes the use of 

the ordinary Hartres functions as orbitals u,.    Hartree'r. original method is based on the 

assumption that each electron moves in the field of all electrons except itself.    This 

means that each wave function Is a solution of a different central field problem,  so that 

there is no reason why they should be orthogonal,  and in general they are not.    It does 

not exclude functions determined by the Hartree-Fock method;  we shall show later that, 

even though these are solutions of different central field problems,   still they automatically 

are orthogonal to each other.    But we have r.oted that since the Hartree-Fock method op- 

erates only with a single determinantal func:lon,  It determines only n orbitals u,.    If we 

want to use a number of determinantal functions,   we must have more u.'s.    If we found 

more of these from a second Hartree-Fock probir.r.,   : efer:ing perhaps to a different 

configuration from the first,  all the u-'r derived from this second problem would be some- 

what different from those of the first set.    To see this physically,   let us suppose that the 

See,   for instance,   J. C.  Slat<_r,   Phys.  i\ev.   33,   1109(1931),   where thev are Jict.ussed 
for molecular problems. 
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first Hartreo-Fock problem represented the ground state or an atom consisting of closer! 

shells (for instance an inert gas atom), and the second problem an excited configuration 

(for instance the sam" aion. in which the two s electrons in one of the shells were excited 

into s states in a higher, previously unoccupied shell;. The excitation cf these electrons 

would affect all tho other electrons of the atom,   even down to the K  she.H, so that the ; 

second set of u.'s,   ?s we have said,  would all be different from the first.    But then they 

would not be orthogonal to the functions of the first set,   and the convenience of our method 

would be lost. i 

We wish,  then,  to construct all our determinantal functions from one single set of l 

orthogonal orbitals u,.  choosing n of them for the first determinant,  another  n for an- 

other,  and so on.    Thus if we have N orbitals,   we shaU be able to choose the n frorr 

them in N! A n! (N - n): r ways,  and we shall be able to set up this number of determinantal j 

functions from them.   There are really two practical ways of finding the set of N orthogo- 

nal orbitals.   One is to have them all given as solutions of a single Schrodinger equation 

for the motion of a single particle; for we know that all solutions of a single Schrodinger 

problem are orthogonal to each other.    A practical way to do this,  as solutions of a 

Schrodinger problem which respresents a self-consistent field in a satisfactory way,  has 

recently been given by the present writer; *" "' we shall discuss this method in detail later. 

The second method is to set up functions which we have artificially made orthogonal.    If 

we have any N non-orthogonal vectors, then we can set up N linear combinations of them, 

which will be orthogonal,  In an infinite number of ways.   Thus If •..•* have two vectors In 

a plane which are not at rtgh*. angles,  (and also not parallel),  we can set up any two vec- 

tors In the plane which are orthogonal to each other,  and they can be written as linear i 

combinations of the first two.   Now we can prove a very important general theorem:   if                                 ; 

we have two sets of N linearly Independent vectors,  of the sort just described,  one set 

being derived from the other by linear transformations, and If we form all the determi- 

nants! functions from each set of N orbitals,  choosing n functions for each determinant, 

then the determinantal functions of one set are linear combinations of tne determinantal 

functions of the other set.    Thus an approximate solution of Schrodinger's equ-ilon which 

car. be expressed as a linear combination of functions of the first set can equally well be 

expressed as a linear combination of functions of the second set     Tne final result of our 

calculations will then be the same,   In either case.    Since it simplifies the calculation 

greatly,  It Is therefore worthwhile,  if we wish to start w<th N non-orthogonal vectors or 

orbitals, to make N orthogonal linear combinations of them at the outset,   and then pro- 

ceed from there.    We shall later discuss certain methods of making these linear combina- 

tions which have particular value in simplifying ihe later steps of the calculation.    But 

once we have done this,   we then wish to solve the secular problem In wh<ch all u,'s are 

34J.  C  Slater,   Phys.  Rev.   81,   385 (19SI). 
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orthogonal,   ns we stated somewhat earlier,   so that we arj justified in limiting our cal- 

culation of the matrix components of energy to t?us simple case.    We note thai ihe sim- 

plest result of the theo.-em mentioned in this paragraph is that if N   = n,   or if we have 

just as many crbitals ss electrons,   so that only one determinant is formed, < nis deter- 

minant will be identical whether i; is formed from the original n orbitals,  cr from an> 

n linearly independent linear conrbinatic.j of •hem. 

We have now discussed the general philosophy of the determinanlal method enough 

so that we are prepared to proceed with its use.    We shall then calculate the matrix com- 

ponents of the energy between two such determinantal functions,  formed from two differ- 

ent selections of n orbitals out of a set of N orthogonal (and normalized) orbitals.    We 

shall assume each determinant to be divided by (n!) '   j then ihe determinants will be 

normalized,   as well as orthogonal,  as a consequence of the orthonormal properties of 

the u.'s.    Then it is a straightforward matter to compute the required matrix components, | 
(35) and we merely suite the results-x    ' 

3. Matrix Components of Energy and Angular Momentum 
i 

Tl:e energy operator, given in Eq. (1. 1) is a sum of operators,  which we may call i 

f,,  each operating on the coordinates of a single electron (that is,   -V.   -   £ (a) 2Z Jr.   »; 
and A sum over pairs of electrons of quantities g,.,  each equal to Z/i ...  each operating on 

the coordinates of two electrons; the remaining terms, the electrostatic interactions be- i 

twee t nuclei,  are a constant,  and have a diagonal matrix.    We then wish to find how to 

get the matrix components of such operators with respect to determinantal wave functions 
1/2 of the form given in Eq. (1. 2), properly norni^'ized by dividing by (ni) '   ,  in which we 

i 
are to assume that ail orbitals u. appearing in all the determinants are orthogonal to eac-» 

other.   If one of the determinants is formed from orbitals u, . . u_,  the second from or- 
i n 

bitals u.' .  . u *, then we can see very easily that the matrix of an operator like H, which 

Is symmetrical in all the electrons,  can be written in the form 

5/t?)-r*««l»l>1      un'*<xii*n>Hul<Vl>-  '  un<xnsn> dxl '  ' dxn  • 

where the sum is over all permutations of the subscripts 1 . . n of the first set of func- 

tions, each term is to appear with a + or - sign according as the permutation involves 

an even or odd number of interchanges of rows or columns, and the integration over the 

x's is Supposed to include also a summation over the spins. If the operator H consists 

of summations of quantities f-; each f. will operate on only one of the u's following It, so 

•ha1, on account of orthogonality,  the integral will be zero unless each u' except u,' is 

"The results for diagonal components were stated by J.   C.  Slater,   Phys.   Rev.  34,   1293 
(1929);  for non-diagonal components,  by J. C.  Slater.   Phys.  Rev.   30,   1109 (lTTl); 
note a typographical error there in the formula lor a quantity cailed~TU/G/U').    For the 
non-diagonal'.omponcnts,   sec also E.   U.  Condon,   Phys.  Rev.  3L,   1121 (1930).    The 
results are i*.lso given in QTM,   p.   195. 
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identical with the corresponding u.    If H  consists of Summations of g. 's,  the integral 
At |U * J 

will be zero unless each a' except the i " and j     is identical with the corresponding u 

Proceeding ir. this way,  we can easily find the matrix components     These are stated in 

QTM,   pp.   194.   195,   and we repeat the definition in the same form. 

To state the values of these components,  let us define i* quaniiiy 

(l/f/j) •   I(spin 1) fu^^s.) fjU.tXjSjJdXj (1.3) 
i 

We note that if f is an operaioi depending on coordinates oniy,   as in the operator  H from 

Eq.   (1. 1),  then the quantity (1.3) will tc zero if the functions u. and u. correspond to dif- ! 

ferent spins.    On the contrary,  if f depends on spin only,  the quantity will be zero if 

u. and u^ correspond to different functions of coordinates.    Similarly let us introduce a 
quantity , 

Uj/g/kf)   =   X(spin 1) J(spin2) jjul*(x1s1)uj*(x2s2)g12uk(x1s1)u<(x2s2)dx,dx2       (1.4) 
i 

Here again w* notice that if g.2 depends on coordinates only, this quantity is zero unless 

u, and u.  correspond to the same spin,  and u   and u   correspond to the same spin. 

In terms of these symbols (1.3) and (1.4), we now find that the diagonal matrix 

omnn""Pt of energy with respect to a dctcrminantal wave function equals 

I (i/f/i) • X        [vij/g/ij)  -  (ij/g/jl)]. O-'J 
i p-'r? i, j 

where the quantities (ij/g/ji) are called exchange integrals,  and where we see that they 

are zero unless the orbitals u. end u   correspond to electrons with the same spin.   The 

non-diagonal matrix component between two determinants wave functions will be zero if 

the two determinants differ in more than two orbitals.   If they differ tn just two,   say by 

having orbitals u, and u. replaced by " ' and u.\  all others being common to both detern.i- 

nar.ts, the non-diagonal matrix component is 

(ij/g/i'j')  - (ij/g/j'i1). (1.6) 

!f they differ in one orbital,  u^ being replaced by u.\   all others being common to both 

determinants,  the non-diagonal matrix component is 

(i/f/i') •    £    [(ik/g/i'k) - (ik/g/ki')] (l.7» 
k/i 

By use of these formulas, we can easily find^hc matrix components of the energy 

between various determinantal wave functions, provided we can compute the integrals of 

form (1. 3) and (1. 4); we shall have sometning to say later about actual methods of com- 

putation. Once we have the matrix of energy, we can set up the secular equation, and if 

we fan solve it, we can set up *he wave fonctions which form the best possible combina- 

tions of the origina1 dc:cr:nir.ir.*s,   in order to approximate the true wi'-'j functions of the* 
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problem.    We must remember that our formulas for matrix components have their rather 

simple form only on account of the orthogonality of the orbita's.    If these were not orthogo- 

nal,   the formulas would be exceedingly complicated,  though even in that case they can of 

course be set up. 

In most atomic problems we must solve a secular equation between a considerable 

number of determinant! wave functions,  and this equation would be of very high order, 

and difficult to handle,   if it were not for simplifying features.    Thus if n' out of the n 

electrons have unpaired spins,  we certainly are interested in all the states formed by 

choosing the spins cf these electrons in either of the possible ways,   so that we surely 
n1 

must consider ?      functions.    Generally too ihere is orbital degeneracy as well as this 

spin degeneracy.    The simplifying features arise from the conservation of angular mo- 

mentum.    If we disregard the magnetic spin-orbit coupling,  both spin and orbital angular 

momentum are conserved,  in the absence of an external field.    We shall describe in the j 

next section now this conservation can be used to heiH solve the problem.    The first thing j 

which we need to know,  for this purpose,  is how to find the matrix components of the 

various angular momentum vectors,  betw**»»n the various daterminantal wave functions. 

We shall find that we wish the matrix components of the z component (where z is an ar- 

bitrary axis of space quantization) of spin angular momentum,   and of the square of the 

magnitude of the spin angular momentum:  and similarly for the orbital angular momen- 

tum.    In finding these,  we shall remember that the total angular momentum is tht vector 

sum of the angular momenta of the various electrons.    We 3t»r', then, by finding :he 

matrix components of the x,  y,  and z components of angular momentum of a single elec- 

tron, then by summing over all electrons,   and finally,   if we are interested in the square 

of the total angular momentum,  in squaring the components and adding. 

In finding matrix components of the angular momentum vectors,  we are dealing 

with a problem which held a very important position in the development cf quantum me- 

chanics.    The structure of multiplets,  and particularly the Zeeman effect, '     ' wero 

problems which contributed very greatly to the vector model,   and to the whole structure 

of quantum theory.    Tor this reason,  the interaction of angular momentum vectors was 

one of the first problems Investigated by quantum mechanics.    It was a problem for which 
(37) 

the methods of matrix mechanics,  introduced by Heisenbergv    ' slightly before Schro- 

dinger'3 wive mechanics,   prov»d to be more convenient than the methods of wave me- 

3*These pioblems are taken up in Sommerfeld's Atombau und Spekt.-allinien,   previously 
mentioned.    An excellent treatment,  by two of the workers who contributed most to 
their understanding,   is the book Zeemaneffeki und MultipleUa.'ruktur der Spektrallinien. 
by E.  Back and A.  Lande*,   (Springer,  Berlin) 1924.    Many references to earlier work 
are given there. 

17W.  Heisenberg.   Z.   Physlk 33.   879(1925);   M.   Born,   W.   Heisenberg and P.  Jordan, 
Z.   F*v«ik 35,   657 (1926);  thc~theorems regarding angular momentum ai e well taker, 
up jn Elei^entare Quantenmeehoruk,   by M.   Born and P.   Jordan,   (Sp. inger,   Berlin) 
1930.    KTkny other writers during this s<,me period contKbu-.ed to the theory. 
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pi oblem.   We must remember that our formulas for matrix components have their rather 
simple form only on account of the orinogonallty of the orbitals.   If these were not orthogo- 
nal, the formulas would be exceedingly complicated, though even In t\u' case they can cf 
course be set up. 

In most atomic problems we must solve a secular equation between a considerable 
number of determinants! wave functions, and this equation would be of very high order, 
and difficult to handle, if it were not for simplifying features.   Thus X n' out of the n 
electrons have unpaired spins, we certainly mrm interested In all the states formed by 
choosing the spins of these electrons in either of the possible ways, *c that we surely 
must consider ln   functions.   Generally too there is orbital degeneracy as * ell as this 
spin degeneracy.   The simplifying features arise from the conservation of angular mo- 
mentum.   If we disregard the magnetic spin-orbit coupling, both spin and orbital angular      > 
momentum are conserved, ln the absence of an external field.   We shall describe ln the 
next section how this conservation can be used to help solve the problem.   The first thing 
which we need to know, for this purpose, is how to find the matrix components of the 
various angular momentum vectors, between the various determinants! wave functions. 
We shall find that we wish the matrix components of the z component (where x is an ar- 
bitrary axis of space quantisation) of spin angular momentum, and of the square of the 
magnitude of the spin angular momentum] and similarly for the orbital angular momen- 
tum.   In finding these, we shall remember that the total angular momentum is the vector 
sum of the angular momenta of the various electrons.   We start, then, by finding the 
mat. u components of the x, y, and s components of angular momentum of a single elec- 
tron, then by summing over all electrons, and finally, if we axe Interested ln the square 
of the total angular momentum, ln squaring the components and adding. 

In finding matrix components of the angular momentum vectors, we are dealing 
Tith a problem which held a ve» j important position iz. tL= sic. =l-^Eu«ut of quantum me- 
chanics.   The structure of multiplets, and particularly the Zeema» effect,'    ' were 
problems which contributed very gr«atly to the vector model- and to the whole structure 
of quantum theory.   For this reason, the interaction of angular momentum vectors was 
one of the first problems investigated by quantum mechanics.   It was a problem for which 
the methods of matrix mechanics, Introduced by Heisenberg'    ' slightly before Schrd- 
dinger's wave mechanics, proved to be more convenient than the methods of wsve me- 

'"These problems are taken up in Sommerfeld's Atombau und Spektrsiiimen, previously 
mentioned.   An excellent treatment, by two of tne workers woo contributed most to 
their understanding, is the book Zeemaneffekt und Multlplettatruktur der SpektraUinien, 
Of E. Back and A. Lands", (Springer, Berlin) i?Z4.   Many referencesTo"earlier work 
are given there. 

37 W. Heisenberg,  Z.  Physik 33,  879 (1925)» M. Born, W. Heisenberg ana P. Jordan, 
Z-. Physik 35.  557 (1926); tne"theorems regarding angular momentum are well taken 
up ln Eleven tare Quantenmechanlk, by M. Born and P.  Jordan.  (Springer.  Berlin) 
"1930     Many other writers Sfurtng this same period contributed to the theory. 
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3.  MATRIX COMPONENTS OF ENERGY AND ANGULAR MOMENTUM 

chaD<cs, proved to be more convenient then the method* of wave mechanics,  though of 
course the two methods are Intimately related. *J '   The treatment of the electron spin, 
ftven in 1927 by Paull,'    ' was based on the general melho-Jr. already worked out several 
years before, as If the e««vtruo were merely a spinning vector cf angular momentum 
1/2 unit.   We shall use this point of view, referring the reader to QTM, pp. 479-445, 
and shall first set up the matrix components of the spin angular momentum of a single 
electron. 

The starting point of the usual method of quantising angular momentum is to as- 
sume that we have a a*t of wave functions differing from each other only in the compo- 
nent of angular momentum along the s direction, which is assumed to be quantised.   If 
the quantum number representing the magnitude of the angular momentum la   i , and the 
quantum number representing it* component along the z axis is m, then, ss shown in 
the references mentioned (see QTM, p. 482), the matrix components of angular momen- 
tum are the following: 

Mx(m. m • l) r    R^m + 1. m) •      */{l - m)tf «• m + l)(h/4v) 

M (m, m • 1) • -M (m • I. m) « I   */{£ -m)(l*m + l)(h/4w) (I. 8) 

M (m, m) • mh/2w. 

That Is, M   and II   have components only between two wave functions whose quantum 
numbers m differ by one unit, while M   has only diagonal components.   We now apply 
these equations to the spin of a single electron, whose magnitude is h/4w, corresponding 
to I • 1/2, and for which therefore the q«ia<^um number m can take on only the two 
values t 1/2.    We shall write the matrix components, not of the asgul«* momentum It- 
self, but of the angular momentum divided by h/2v, which «r« shall denote by the com- 
ponents s, s , s .   Then we ffnd, using (1.8), that the only components different from 
vero are 

sx(-l/2, 1/2) .    sjl'2, -1/2) - 1/2 

sy(-l/2. i/2) . -sy(l/2. -1/2) =   1/2 (1.9) 

•f(l/2. 1/2) -  1/2. ss(-l/2. -1/2) . -1/2. 

These vector components «r« half *s large as those used by Paull,  in the reference just 
cited; he measured his angular momentum In units of h/4w instead of h/2w as we are 
doing. 

We may now combine these expressions with our general method of finding matrix 
components of an operator, *• gtv#n in Eqs. (l.S), (1.6). and (1. 7), to find matrix com - 

38The main points of this treatment are givtn in QTM.  pp. 479-485. 

*9W. Paull. Jr.. Z.  Physlk 43. 601 (1927). 

I 
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M-jnents of the spin angular momentum,  and of Its square, with respec* to the determl- 
nar*«l wave functions.    The operators • ,  s ,  s_ are functions of spin cniy, a.«1 ef a x     y      z 
single electron only.   Thus they are of the form f.f mentioned earlier, and as pointed 
out before, there will be no non-diagonal matrix components between two states in which 
the quantum numbers of more than one electron cbangt.  and furthermore there will be 
no components be'wesn '.wo states in which the orbits! parts of the or.e Electron functions 
change.   If we denote the bum of the a'z of all electrons by Sx> and similarly for the 
other components, we then find that 3   has ncn-vanlshing components only between two 
states whi.se sets of orbltals u. differ only in thet one particular orbital for the Initial 
state corresponds to the oppo»ite spin from the same orbital for the final states then the 
non-diagonal component of S   equals 1/2.   Similarly S„ has components only between 
such states, the ncn-diagonal component being 1/2 If the spin changes from - 1/2 to + 1/2 
going ;'roa the initial to the final state, but - 1/2 if it changes froiii + 1/2 to -1/2.   The 
component 2   has only a diagonal matrix component, and this is composed out of con- 
tributions s   from each electron.   These contributions equal 1/2 for all electrons of + 
spin,  - 1/2 for all electrons of - spin.   The sum of all these is the net z component of 
spin of all electrons, measured in units of h/2*. this Is what is usuuliy called Mc.   Hence 

•3 
we see that s   has a diagonal matrix, its diagonal component for any determinants! func- 

m 
tion being the Mg of that function. 

We can now use these rule* to find the matrix of S " • 8     • 8        To uv    «1« 
we need merely use the familiar rule i'or multiplication of two matrices.   Thlr *~ r"' .. 
that \h- -v. •*•»*<•*. of the product of two matrices F and G, oetween two states, equals the 
sum of products cf Titrlx components of F from the initial slate to all possible inter- 
mediate states, times the component of G from the intermediate state to the final state. 
In our calculation, then, we must loo'.- for all poasible intermediate states between the 
initial and xinal state, and set up the appropriate products for each.   We see at once that 
S„    • 8     • S     can have components only between two determinants! functions with the 
same orbital part of the one-electron functions, and that furthermore only two electrons 
can change their z component of spin In going from initial to final aUtc:   one in going 
from the Initial to the intermediate state, another going from the intermediate to the 
final state.   If both these electrons change their spin In the same direction (that Is, if 
both go from + to -, or both from - to +), then the contributions ef Sx   will be (1/2)** * 
1/4, and of S Z(l/2)2 or ( - l/2)2, or - 1/4.  so that the contributions of Sx* • S 2 will 
cancel.   If there are any changes of spin, the contribution of 8." will be zero.   Thus we 

2 2 2 see at once, bv direct calculation, that S„    + S„    + S_   wUl have non-vanishing matrix x y z 
components only between two states of the same Mg, since !' the spin of one electron 
changes from + to -, that of the other 'rom - to •, the M„ v. ill be the same in iniiial 
and firal «•••=. 

2 2 2 Let vs now calculate firtit the diagonal matrix component of 5      + S      '.  S 
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From the operators S..   and S    . we shall have contributions from many Intermediate i 

states.   In fact,  If any one-electron function of coordinates appears In the determinants! i 

function we are considering only once, with only one spin,  we can hpve an intermediate 

statt- in which this electron appears with reversed spin.   We can call such an electron an 

unpaired electron.   For each such unpaired electron, then, the contribution of S     from 

the original state to this intermediate stste vith reversed spin, and then back tc the initial 

state,  will be 1/4.   Similarly the contribution of S     will be 1/4? here, in contrast to the 

preceding case, the two factors multiplied together in finding S     will refer to transfor- 

mations with the spin changing in opposite directions, so that we shall have (i/2)( - i/2) • 

1/4, and the terms from S     will add to those from S„   instead of subtracting.   The net 
2    '     2 result, then, is that S     + S     will contribute an amount 1/2 to the diagonal component 

o* the matrix, from each unpaired spin.   Notning will be contributed from paired spins, 

that is from orbital wave functions occupied by electrons of both spin*, for then the inter- 

mediate state, in which one of the electrons changes the sign of its spin, would be for- 

bidden by the exclusion principle.   The operator S     will contribute simply Mg   to the 

diagonal component of the matrix.   This we conclude that the diagonal component of 
2 ' 2 '2 S_    + S      + S     with respect to a determinants! wave function equals the Mc   for that x y s s 

wave function, plus 1/2 times the number of electrons with unpaired spin In the wave 

function. 

Next let us find the non-dlagonuJ matrix components of b      • S      + S_ .   There 

will be no contribution from S_ •   We hav? -'r^p.dy seer, that there will be a component 

only If the spin of one orbital shifts from + to -, and of another orbital from - to +, in 

going from the initial to the final wave function.   There will be two possible intermediate 

states:   in one of them, the spin which was originally + has changed to -, but that which 

was originally - Is unchanged, so that this Is a state with two - spins for the orbltals in 

question] the other intermediate state Is one with two + spins.   In either case, Sx   con- 

tributes 1/4 going from the initial state through the Intermediate state to the final one, 

and so does 3    , so that each intermediate state contributes 1/2 to the non-diagonal ma- 

trix component, and the two intermediate states together contribute urity.   Each'non- 

vanishing non-diagonal matrix component is then unity.   We observe that any orbital func- 

tion appearing twice in the determinant, once with + spin, once with -,  will take no part 

in the non-diagonal metH« components, since the possible intermediate states formed 

from this would be forbidden by the exclusion principle. 
2 2 2 

We have seen, then, how to find the matrix components of S      + S„    + S,  •    Wf 
(43) * y z 

have followed in this the method introduced by Johnson, *    ' who used these components 

in the way to be described In the next section.   Johnson also computed, for reasons which 

we shall see shortly, •;-;<. .:auix components of L      • L      • L_ . where the L operator x y x 

40M. J. Johnson.  Jr.,  Phys. Rev.  3?,   197(1932). 
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stands for orbital angular momentum, divided by hi In, just as the S stands for spin angular 
momentum.   The procedure u&ed in finding this Is entirely analogous to what we have just 
shown.   We sta»-t again with Eq- (1 • &), but new the square roots do not simplify as they do 
with the suln.    We find that L ,  L , L . the vector sum of the orbital angular momenta of all x     y      z 
the electrons, h&vs non-diagonal matrix components only between two states in which the or- 
bital quantum number m of a single electron has changed by * 1 unit, and these non-diagonei 
matrix components follow at once from Eo   (i   B).    The quantity I.   has a diagonal matrix, the 
diagonal components being just M. , the sum of the components of. orbital angular momentum 

" u 2 2 2 
along the z axis for all electrons.   We can find the matrix components of L.     «• L      • L_ A y z 
just as in the spin case, by matrix multiplication,  though the formula* are not as simple as in 
the spin case.   We find, a* before, that there are no non-diagonal matrix components between 
two states of differ*!" M,  value.   The onJy non-diagonal components then come between two 
states which differ in that the m of one electron has increased by 1 unit, and that of one other 
electron has decreased by 1 unit, between the initial and final functions.   As for the spin, in 
calculating either diagonal or non-diagonal components, we must take account of all possible 
intermediate states, consistent with the exclusion principle, find the components of L     and 

> x 

L arising from transitions from initial to final state through th«se intermediate states, us- 
ing Eq. (1.8), and combine the results. The final result is very simple to work out, though 
the formula, as given in the reference cited by Johnson, is a little complicated to write down, 
simply because it tries to take account of all those cases permitted, or forbidden, by the ex- 
clusion principle. We shall not state the formulas, since the reader, if interested, can work 
them out for himself from the directions which we have given, about as easily as he can learn 
to understand the notation necessary to ^rril= them down explicitly. 

Johnson also works out the matrix components of the scalar product L 8    + LS    :- 
LS., again for reasons which we shall explain shortly.   Here again the method is obvious 
from what we have already said.   This quantity has r.on-diagonal matrix components only be- 
tween two states differing from each other in that the orbital angular momentum has had its 
component along '.He z axis decrease by 1 unK between the Initial and final function while the 
z component of spin angular momentum has Increased by an equal amevnt, or vice versa. 
Tne diagonal matrix component Is simply M. M<.. 

4. Solution of the Secular Equation Troblem for an Atom 

We have already mentioned that In setting up the problem of the structure of an atom, 
we muit lie • considerable number of determlnantal functions, to get a proper representation 
of the real wave functions describing the nviltlplets.   It would be a difficult thing to solve ihe 
secular equation for the energy, between these determlnantal functions, if we did not have ad- 
ditional information.    This additions' information Is supplied by the behavior of the angular 
momentum,  whose matrix components we have discussed In the preceding section.   Let us 
now see how thsy nr» to he used.    We shall first constde* the casv wherr the energy operator 
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la Jest the Hamlltonian of Eq. (I. 1),  including only kinetic energy and electrostatic terms. 

Later we shall take up the more complicated cc-e \r> which we consider also th» mnippttc in- 

teractions between spin and orbital motions of the electrons;  these magnetic interactions,  as 

we know, are responsible for the energy separation between the levels of .he multlplets. 
first we remind the reaucr of the simplified method o* h^r^tling the problem introduced 

by the present writer*    ' in nis paper on the subject.   We note in the first place that there are 

no non-diagonal matrix components of energy between states of different M.  or M_ values,  so 

that we need to consider secular equations only between the various determinants! functions 

having a given M. and Mg.   This already greatly reduces the order of the secular equation. 

But further, we remember, as in the discussion just mentioned, that each energy value ap- 

pears as a root of many of these secular equations.   Thus when we wish to solve one of the 

secular equations, we may often find that all of its roots but one are already known.   Then we 

may use the diagonal sum rule, according to which the sum of the diagonal matrix components 

of the energy matrix equals the sum of the roots of the secular equation, to find the one miss- 

ing root by subtraction, and without having to solve the secular equation, or even to compute 

Its non-diagonal components.   By this means, as was shown In the reference quoted above,  we 

can find the energy levels of all the multlplets, as far as they r.re determined by the electro- 

static Hsmlltonlan of Eq.  (1. 1), provided we have only one multlplet of each L and S value. 

If we have more than one multlplet cf a given L and S value, then the diagonal sum rule allows 

us only to find the sum of the energies of these multlplets.   Thus, for instance, if we have the 

case of three non-equivalent s electrons, which can easily bs shown to lead to a quartet and 

two doublets, the diagonal sum rule only leads to the sum of the energies of the two doublets. 

For the esses where this method using tne diagonal sum rule is applicable, It is the 

simplest way to solve the problem.   However, there are several drawbacks connected with 

this method.   In the first place, It is obviously Inadequate If we have  more than one multiplet 

of the same L and S value.   In thin case, we can still proceed.   Suppose, for instance, that 

the diagonal sum rule aitows us io find all but two of the roots of a secular equation of N rows 

and columns,   giving only the sum of the two remaining roots-    We can set up the whole secular 

equation, which ore can do If we know the non-H^tjer.s! *•*•»»'»* components of energy.    This 
•s 

will h+ *»• s'gebralc equation of the N* ' degree, of which we know N-2 roots.   If these roots 

are aenoted by E., .  . EN _ ,, we know that the secular aquation,  which will be of the form of 

(E-EN_2). E     • AjE • .  .   • Aj, • 0, must contain factors (E • Ej),  (E - E2), 

We then divide the left side of the equation by there "actors, uid are automatically left with a 

quadratic,   which we can solve by elementary methed*. , Extension of this method allows us in 

any case to take full advantage of the diagonal, sum rule, and solve secular equations by nu- 

merical or other method only for the final Inescapable problem of handling the various mul- 

tlplets of the same L and S value.   However,  iiiis procedure may be a little complicated,  and 

; 
1 
i 
i 

1 

i 

i; 

41 C. Slater, Phys. Rev. 34,  1293(1929); taken up in QTM,  pp.  158-1 >•*, <;79-4S9. 
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w: might wish a procedure for getting directly to the secular equation for these remaining 
multiple! energies.    Wc know that the various solutions of the original secular equation cor- 
respond to multiplet states of various L and S values,  and it woula be a help if we could 
separate it out from the outset Into equations each corresponding to only one particular L and 
one particular S ~alu*.   This, «» we shall see. can be done, and each one of these equations 
will then be reduced «v far as Is possible,  from considerations of angular momentum. 

The second drawback of the method of diagonal sums tS that it does not yield the wave 
functions, but only the energy values, of the final states.    These ««ve functions are often re- 
quired.   In particular,  if we wish to include the magnetic interaction, which has been men- 
tioned previously, the first step Is ordinarily to solve for the degeneracy problem at islng 
from the electrostatic Interaction, then use the wave functions resulting from this as the 
staring point of a calculation of the energy levels and stationary states of the problem includ- 
ing magnetic energy.   The first step Is to compute matrix components of the magnetic inter- 
ar"">n with respect to these wave function*,  and this obviously cannot be done unless we know 
the wave functions.   Here f gain a method of finding the wave functions associated with a def- 
inite value of L. and S. as well as of M.  and M_ is needed. 

Let us now see how a knowledge of the behavior of the orbital and spin angular momen- 
tum vectors can hep us in r«ur problem.   We know (see QTM, as referred to) that the Ham 11- 
toman Operator H, of Eq. \1- 1), commutes with the z components of orbital and spin angular 

2 
momentum, and also with the squares of toe magnitudes of these T.gi.lai momenta.  L„    + 

2 2 2 2 2 L      r L_   and S      • S„    + S_ .   Thus we can separately diagonaltze ail of these quantities. 7 * x y x 
and In fact in the final wave functions,  which we wish to arrive at, they are all dtaponalizeri. 
The diagonal components of the s components of orbital and spin angular  momc.ii.ir. are juai 
M.  and m~ (In unt*9 of h/2«), and the diagonal components of L      + L      + L_   and S„    + V ,a x y z x 
S* • »„' are L{L • 1) and S(S • 1) respectively,  (see QTM. p. 482* where L and S a-e the 

y        z 

orbital and spin quantum numbers.   In addition, of course the energy is diagonalizcd in lh»«» 
final wave functions.    In the original dctcrniuuimai wave functions, the x components of or- 
bital and spin angular momentum are diagonal, but the magnitudes are not,  as we have seen 
In the preceding section, where we computed their non-diagonal matrix components,  «uiJ of 
course th» energy is not diagonal. 

Now we remember that Scurodlnger's equation HU • EU is really a device for finding 
wave functions U with respect to which the energy n. ulevnnallzed.    Similarly we could set 

2 2 • 2 up an operator equation,  (5      *S      • S , ) U  « S(S •  1)U,  and If we solved It, the resulting 
function U would make the magnitude of the spin angular momentum diagonal.   We can go 
further than in Schrodtnger's equation, for we know in advance, by simple methods,  that the 
diagonal matrix components equal S(S • 1),  so that we do not have to determine these quanti- 
ties.    It can now often L»e the case that this equation for the spin angular momentum car. be 
solved more conveniently than Schrodinaer's equation.   For one thing, It does not depend on 
specific details of the energy operator,  so that It can be solved one. for all for large classes 
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of problems.   The resulting functions U will then have close relationships to th» final solu- 

tions of Scnrcdinger's equation which wo desire.    Ther-e will,  however,  be wMespre^u decent." 

acy in the solutions of this opin equation     We see,  by analogy with Schrodinger's equation, 

that any two wave functions associated with the same S value,  or same multiplicity,   will act 

like £cgcr.«i okte states,  and the equation will not uniquely determine the solutions,  out only 

linear combinations of them.   Thus we cannot hope to solve our whole problem by the ucte of 

these operators.   But we can at least separate out the wave 'auctions associated with the dif- 

ferent multlpltcltes, and this l-i the sort of thing we are trying to dc. 

We ran make our argument clearer by using one or two examples.    Let us first take 

the familiar case of two non-equivalent s electrons, whe.*e we have a singlet and triplet.    We 

know that we have four determinants! states; one. with M~ =  1. with two + spins:  a second, 

with M,. « 0,  with the first orbital function (which we may denote a} having a + spin,  and the 

second iwhi :h we denote b) a - spin;  a third, also with Mg = 0,  with a having s      spin, b 

having a + spin; and a fourtn state, with Mc • - 1,  with both - spins.   From the rules for de- 
2 2 2 tenninir^ the matrix components of S„    + S„    + S_  , from the preceding section, we find at 

once that the first and fourth states have diagonal matrix components equal to 2,  and no non- 

diagonal matrix components connecting them with any other state.   This Is as it should be: 

they both are connected with the triplet state, for which the diagonal components shou'd be 

P'c ». i j -_ £,   The states 2 and 3, with Mg • 0, have diagonal matrix components of unity, and 

not>-diagonal matrix components also of unity.   Let us now consider the resulting secular equa- 

tiwMi. 

Let U..  ", be the determinants! wave functions associated with these two states of 

Ms = 0, and let us write the linear combination which we are looking for T.U.   -•  T,Tj..    We 

wish to choose Tj, T2 so that the equation (S%
Z • S 2 + Sa.2>»T.U1 • T2U2) » S(S   •  1)(TJUJ + 

T.U,) will be satisfied, where we are to Insert s> = 0 for the singlet, S = 1 for the triplet. 

In the usual way we multiply the equation above first by U,*.  then by U2*.  and in each case in- 

tegrate over coordinates and sum over s{. n.  and use the orihc.iormal properties of the U's. 

Then we have the matrix equations 

i [(Sx
2 • Sy

2 • Sz
2)u   - S(S •   1)]   T,   •  (Sx

2 • Sy
2 • Sz

2),2 T2  = 0 . 

<SX
2 • Sy

2 r Sz
2)12 T|   «   [(Sx

2  • Sy
2 • Sz

2)22  - S(S •  !)]   T2 = 0 . 

2 2 2 Here (S      +  S      + S    ). . represents the (1, 1) matrix component of the square of the cpir x y s    i i , 
angular momentum,  and so on.    Putting in the known values of these matrix components,  we 

have f , J 
[l  - S(S •   l)j T, + T2 = 0 

T,  •   [l   -  S(3 •   l)jT2  =  0 

"'he «*cular equation associated *ith ihsae two simultaneous linear equations in of course 
i 
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1 - SiS • I) l| 
= 0 

1 1-S(S+1)| 

whose solutions are at once found to be S  =  0.   1.   as we alru&dy knew they should be.    If we 

put S »   1 In (1. il),  tc get the triplet wave functions,  WP find T.   = T,.  so that the triplet wave 

function is the sum of the functions U. and V   (*ui>aWy nrn-maJlzed).    Similarly putting S = 0 

for the s ngiet.   we find T.   •  - T,>   These results agree with those of elementary discussion 

(see QTM.   p.   196), but we have obtained them without consideri.ig the form of the energy op- 

erator at all. 

The case just considered is of course trivial: but now let us consider three non-equiva- 

lent s electrons,  which is not trivial.    Let the orbital parts of the wave functions be denoted 

by a, b,  c.    Then we have one determinantal function wi*.h M„ = 3/2,  with + spins on all three 

orbitals; three determinantal functions with M-  = 1/2,  of which one has + spins on a and b, 

a - spin on c,  and the other two have the minus spins on a and b respectively; three similar 

functions with Mg « - 1/2, and one with Mg = - 3/2.   We find at once that (Sx
2 + S 2 + Sz

2) 

has a diagonal component of 15/4 for the states of ML = * 3/2.  and no non-diagonal components 

from these states to any others.   These spates correspond tr the quartet, for which the diago- 

nal component should be (V2)(V2) "  15/4-  as Is found.   For the states with M_ =  1/2. we 
find diagonal comnomntu, all equal,  of 7/*,  ar.d r.on - diagonal components between »ach pair, 

equal to 1.   If we then set up a linear combination T.U.  + T,U2 + T»tT3 °- these functions, 

and proceed as before, the three equations analogous to (1. 11) are 

[7/4 - S(S •  1)1 Tl * T2 + T3 n 0 

Tl + [v/4 - 3(5 +  1)1 T2 • T3 = 0 {i. i2) 

Tj  + T2 • [7/4  - S(S •   l)jT3  « 0  . 

We verify at once that the secular equation arising from these equations has a single root 

S  = 3/2,  aii-1 m. double root S »  l/2,  corresponding to the quartet and the two doublets.    If we 

set S * 3/2 In Eq.  (1. 12).  to get the T's corresponding to the quartet,  we find 

-  2Tj  + T2 + T3  * 0,  T,   -  2T? • T3  » 0. T.  • T2  -  2T3  = 0 

whose solution is at once found to be T j • T2 = Ty Thus the quartet function la the sum of 

Uj, tK, and U,, properly normalized. If on the other hand we set S " 1/2, to find the douD- 

lets,  we find that all three equations reduce to one.  T,  + T2 + T3 » 0. 

This single equation T.+T2 + T3=»0 does not uniquely determine the wave functions 

of the two doublets,  and we should not expect that it would.    We can see what is happening bet- 

ter If we look ai ii geometrically.   We remember that a wave function can be represented as 

a vector In a many-dimensional space.    In our case, the three functions U ,  U,,  U3 can be 

regarded at> three orthogonal vectors In a th-.v. dimension*! spar-     Tkr.r. the combination 
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I TjU,  • T2^2 * T***i is a %Jctor ~ *^*8 sPace whose components along Oj.   U2' and U3' 
which we ru*> regard as unit veciora,  »r#> T     T,.  and T,.    The equation Tj  « T, - T3, 

I which holds for the quartet functions,  mmr.± that this function is represented by a unit vector 

aiong the a;»gor ai of the firs4, octant, making equal angles with each of the axes.   The other 

tv.o vectors,  representing the two doublets,  mu»i be orthogonal to this vector,  or must lie in 

iiie plane normal to It.   But we have found that these doabiets are determined by the equa'ion 

Tj  • T, • T3 = 0, which, like the equation x + y + z = 0, is just the equation of this plane. 

We may choose any two unit vectors at right angles to each other in this plane,  and they will 

then be suitable functions to represent the doublet functions.    We may then find the matrix 

components of the Hamiltonlan function with respect to these two functions,  and solve the re- 

sulting quadratic secular equation, yielding the two doublet energy levels and wave functions 

of the problem.   Thus we have avoided having to solve a cubic secular equation between all 

three states with M„ =  1/2. 

In order to set up the secular equation between these two doublet states, we must find 

the matrix components of energy with respect to these: wave functions of the form T.U.  + 

T,U, + T ,U,. when we knew the matrix components with respect to the U's.   This is a 

straightforward problem in the transformation theory of matrix mechanics;   the problem of 

finding the matrix components of any operator with respect to the transformed wuv? functions 

!EU) T» jU.i. when we knew the matrix components of the operator, which we rosy tak* to be 

H,-,  with respect to the original functions U.   This transformation theory was worked out in 

the beginning of the development of matrix mechanics, appearing in the original papers of 

Heiscnberg and others, already cited.   It is thus a familiar theory; but since it is not t«ken 

up in QTM, it may not be familiar to the reader,  and for that reason we show how to carry out 

the transformation.   The matrix component of an operator like H,  with respect to the original 

functions U, is defined as H. •  = j U * HU. civ.   To find the matrix components, which we shi.ll 

define as H,\ with respect to the transformed wave functions,  we obviously have 

V  =  /(2>>T<w* V) H G>) T<nU-)dv 

•   2>. n) Tlk* Hkn Tjn 
s 

This slrop.e formula contains enough of the transformation theory for our present purposes,  or 

for most purposes.   The T's ere determined by our discussion of the spin operator, as men- 

tioned above, tiii matrix components H^- are computed by the ususl rules with respect to the 

original determinantal wave functions,  and Eq. (1. 13) allows us at once to set up the matrix 

components H. •' with respect to our combination* of determinar.ts,  set -p lu uicg~~alize the 

magnitude of the angular momentum.   1 hus we have all the necessary ingredients for making 

use of the spin in ihe process of solving our secular equation   in the , roblem of a complex 

spectrum. 

We have se.n .Now we can help solve the secular equation by use of spin angular o->o- 
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menturn.    In the srarr.pl? u-v chose,   of three non-equivalent s electrons,  there is of course no 

orbital angular momentum,   so that v»e can make no use of it.    But in cases where there is or- 

bital angular -nomenttim,  the <3iagonali~atlon of tiie sp:n will not accomplish all that is possible 

before « w< ite the secular equation.    In such a case,   among the solutions corresponding to a 

given M,   and M_:   we have solutions corresponding io different spins S.   and also to different 
2 2 2 azimuthul quantum numbers L.   By diagonallzing S      + S      + S    .  we shall be left with a 

degeneracy between the states corresponding to different L's.    We can then carry out the same 

process ever again, but no*A- applied to orbital angular momentum.   That is,  we can take the 

transformed wave functions corresponding to r given value of Mc>  M. ,  and S,  and tranform 
2 2 2 the operator L      • L      + L     to this set of wave functions, using the type of transformation x y z 

given In Eq.  (1. 13).   Then we set up a secular equation for diagcnalizlng this quantity,  just as 

we did earlier for the spin.    This will allow u;» to find new wave functions,  combinations of the 

ones found before,  which make both the magnitude of the spin and of the orbit*! angular mo- 

mentum diagonal.   The energy operator will have no non-diagonal matrix components between 

the states of different S and L,  so that If we transform the energy operator to these functions, 

we shall be in position to set up the secular equation for the energy. 

This Is as far as we need to carry the problem, If we are considering only electrostatic 

energy.   If we are including also the magnetic interaction terms,  however, we must go fur- 

ther.   We shall not discuss   he nature oi tnese terms in the Hamiltonian in detail at present, 

but for our present purposes we need only note that they take the form of torques between the 

orbital and spin angular momenta of the various electrons, torques internal tc the system, 

that they allow the total angular momentum of th„ wiioie atom to be conser    r   uv* "*--.tro% '-... 

conservation of the orbital and spin angular momenta separately.   In other words,  once these 

terms are included in the Hamlltonla.i, the quantities measured by Mg,  M   ,  S,  and L are no 

longer constants of the motion, but J,  which represents the magnitude of the vector sum of 

orbital and spin angular momentum,  and M.,  Its component along the axis,  will still be con- 

served.    In other words.,  the total Hamiltonian still commutes with the operators represented 

by Sx • Lz,  and by if • Jy
2 • if  = (Sx  \  L%)?  *  (Sy • Ly)2 • S2 • L2)2.  which in turn 

equals (Sx2 •  Sy
2 • S^2) •  (Lx

2 • Ly
2 •  Lz

2) •  2 (EL    + S Ly +  S2L2).    Let us then di- 

agon*llze this quantity.   s:nce S 2 + S * • S2
2 and L * • L * + L>z~ nave already been di- 

agonallzed,  and since both these quantities c;>n be easily proved to commute with S L    + 

SL„ • S_L.  we can diagonallze tha latter quantity without destroying the diagonalizution of y y        z   z 
the magnitude of spin and orbital angular momentum (though this diagonal)zation will be de- 

iuuyed when we diagonalize the magnetic interaction in the Hamiltonian}.   Since we have noted 

that SL    +SL    • S L   Involves non-diagonal components between terms with different M„ *   x y   y z   z %J 
and M. ,  but the same MT,  we shall find that this diagonalizatton,   which we can carry out by 

Li J 

the same procedure a'J previously, will lead to final wave functions which are c->mMnr.?<onR of 

several of oar earlier functions, all corresponding to the same S &nd I„ values, but with dif- 

ferent Ms ind M,   though '..-.•? sune M,. 
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Each of the final wave functions which we have obtained in thi^ way corresponds to a 

definite S, L. J.  and M,.    The matiit of the electrostrtic part of the HamUtorvan is diagonal 

with respect *.a these wave functions,  nr fur as non-Hiagonal •. onn>onents between different S 

and L values ore concerned.    Let us assume that we have solved the resulting secular equa- 

tions for the eiec .rostatic energy,  so that we have completely diagonaiised the electrostatic 

energy.    We hi»ve then secured the correct wave functions to describe the. L-S or Russell - 

Saunders coupling,  in which we assume the magnetic Interaction to be negligible compared to 

the electrostatic terms.   Next we set up the matrix components of the magnetic energy.   This 

can easily be done (though we have not shown how to do it) in the original determinantal wave 

functions.   We have found the complete transformation from these functions to our final func- 

tions expressing L-S coupling,  with J diagonalized.    We find that we have non-diagonal matrix 

components of this magnetic energy only between functions with the same J value, as we see 
2 2 2 from the fact that the complete energy operator commutes with J      • J      + J    . but there are x y * 

non-diagonal matrix components between states with different S and L values,  since in the 

presence of -he magnetic torques the spin and orbital angular momenta are no longer constants 

of the motion,    in case these non-diagonal components are small compared to the energy sep- 

aration between the multiplets,  we have the case of Russell-Sounders coupling.    In that case, 

for a first approximation,  we can disregard these non-diagonal matrix components.   Th» di- 

agonal matrix components of the magnetic energy will then give the correct multiolet seoara- 

tlons, and from the form of the magnetic energy we derive the Lande interval rule,  and other 

properties of the multiplets mentioned In the references already given. 

If the nor.-diagonal matrix components of magnetic energy between different multiplets 

are not negligible, however, we must -jolve a secular equation between all states of the same 

J value, and there is no way of further simplifying this secular equation, though we know Its 

matrix components.   The rc-sult will be e. deviation of the multlplet separations from the Lande 

interval rule,  and from R. ssell-Saunders coupling.    In the extreme case where the magnetic 

energy Is large compared to the electrostatic terms', which can occur In some cases with heavy 

atoms, the ovparture from Russell-Saur.cers coupling can be complete, and we can have what 

is called j-j coupling.   We do not have to do anything different to «olve our problem,  however; 

the soluticr. of the secular equation between all stat-     J. *he same J value will still give the 

final energy i»v»ls of the problem. 

The only remaining complication which is ordinarily introduced is to impose an external 

magnetic field,  resulting In the Zeeman effect.    It is easy to find the matrix components of this 

eitern'J magnetic energy In the original,  determinants! wave functions.    But by the various 

steps which we have outlined,   *e now know the complete transformation from these original 

determlnantal functions to the final functions,  taking account of electrostatic energy and of the 

magnetic interactions within the atom.    In the preser.ee of an external magnetic field, J is no 

longer a coistant of th,: motion,  only M, b»ing constant.    Thus we have non-diagonal matrix 

components of the external magnetic energy between states of the oune M. but different J.   V 
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the magnetic field ic- small, these non-diagonal matrix components can be neglected.    If it is 

large,  however, they must be consider* d,  and we must solve a final secular equation between 

al.. states of the same M..    In th* case where we neglect the non-diagonal matrix components, 

we have the ordinary Zeetnan effect;   if wa have to consider them,  wn have the Paschen-Back 

effect, which occurs when the Zeemar splitting is comparable with the separation between 

multlplet levels in the absenc e of the magnetic field.    Tiie procedure we have outlined,  in 

principle,  -illows us to find this Paschen-Back effect in all intern-ediate cases between Russell- 

Saunders iivi j-j coupling. 

We have outlined in this section the general treatment of the secular equation for the 

problem of a complex spectrum, including all the types of simplification which can be deduced 

from the angular momentum relations.    With this treatment,  a certain part of the theory of 

complex spectra is really complete, though of course we have not worked out detailed examples. 

The theory was worked out by a number of persons, in the years immediately following the 

development of the determinantal metnod in 1929.   Amoni; them we may particularly mention 

E.  U. Condon and G. H. Shortley, as well as M.  II. Johnson, Jr., to whom we have already 

referred.   The well-known text by Condon and Shortley summarizes most of this work, though 

the 'jHgtnal pspcrs are often easier to read than the text.    We give below a bibliography of 

some of the principal papers dealing with the determinantal method as applied to complex 

spectra, mostly in the period from 1929 to 1935.   when Condon and Shortley's Theory cf Atomic 

Spectra (Cambridge) was published. 
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•>.  THE HARTREE-FOCK METHOD 

5    The Huriree-Fock Method 

l" *he preceding sections, *e have been handling principally one aspect of the deter- 

mlnnjitai method for atoms:   the solution of the secular equation between a number of different 

deterininantai functfvns,   made up out of one-electron >rbltals.    Now we turn to the other as- 

pect of the problem, the choice of one-electror. orbitals.    First we consider the case where 

we are dealing with er>!y a single determlnantal function;  lr. this case we are led to the Hnrtree- 

Fock method. 

Tn Section 1,  we have mentioned iluA Ii<»« tree arrivAd at his self-consistent field «r ethod 

in an intuitive manner.   It occurred independently, however, to the present writer*    ' and to 

FockJ    ' that it ought to be possible to derive Hartree's equations in a straightforward manner 

from the variation principle of quantum mechanics.    If H is the Hamiltonian operator for a 

given problem in quantum mechanics,  and if u is a normalized, but otherwise arbitrary func- 

tion of the coordinates and spins of the particles of the problem, then we may construct the 

diagonal energy   /u*H u dv.   This will have a definite value for each value of the function u. 

Then we can show that if u is one of the correct wave functions of the problem, this energy 

integral is stationary with respect to small variations of the wave function.    The* ic, if u de- 

parts from one of the correct wave functions by a small quantity of the first order, the diago- 

nal energy will depart by a small quantity of the second order.    This result,  which seems very 

plausible from the known behavior of the perturbation theory of quantum mechanics, is easy 

to prove, and we shall give a proof presently, in case the reader is not familiar with it.   In 

particular,  if we are dealing with the lowest stationary state of the problem, the diagonal en- 

ergy takes on a minimum value for the correct wave function of the problem:   no incorrect 

wave function u can give as low a value for the energy Integral as the correct wove function. 

If now we have a function with a number of parameters in it,  we can get a certain 

amount of variation into the function by varying the values of these parameters.    If we com- 

pute the energy integral   /u* H u dv as a function of these parameters, we may reasonably 

nope that if we choose those values of the parameter? that make the er.ergy integral a minimum, 

we s?>*ll obtain the beat approximation to the ground state of the system which the given func- 
t 

tlon is ilile to take on, by variation of its parameters.   There is one particularly simple case 

of this method.    That is the one in which the assumed function is a linear combination of u 

number of given functions,  so that the coefficients <n this linear combination are the parair.e 

ters in question.   Then it proves to be true,  and we shall prove u shortly,  that the result of 

the variation method is jus* »h* same as the result of the ordinary perturbation method,  which 

also deals with 9 *t>m of a number of unperturbed functions.    But the variation method is much 

broader than this,  for the parameters can enter into li>« function   n er.y arbitrary way,   and 

still we run vary thene parameter* to make the energy integral a minimum.    Foi  instance,  we 
i 

42J.  C  Slater,   Phys.  Kev.   35,   210 (1930). 

*-V.  Fock,   Z.  Physik 61.   Ii6(iyi0}. 
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tn*y hpve a wave function whose general shape is known to be correct, but whose scale is not 

fixed:  we might use a more extended or more concentrated wave function.    We can compute the 

energy as a function of tlie scale factor,  vary this to make the energy a minimum,   and thus get 

tie best approximation to the wave function of the ground s.atc.    We shall ment'.on such applica-     , 

tlons later. 

The application of the variation principle leading io the Kartree method is a broader 

one,  however.   Suppose we approximate the wave function of the n-electron problem by the 

product of one-electron functions u.(x,s.) .  . u (x 8 ).    We can compute the energy integral 

for this function.    We can then ask what one-electron functions u. .  . u   will make the energy 

Integral a minimum.   This question can be formulatc-U mathematically, and It leads to partial 

differential equations for the function* u. .  . u .  which,  with very minor qualifications,  are 

the differential equations to which Hartree had already been led intuitively.    If instead of the 

simple product of ons-electron functions we take the determinants^ function of Eq.  (1*2),  so as 

to take proper account of the antisymmetry of the wave function,  we can again compute the en- 

ergy Integral,  and can again vary the one-electron orbital* to make the energy a minimum. 

This leads to slightly different equations,  and these are generally called the Hartree-Fock 

equations.   These equations, then, give the best one-electron orbltals to use In constructing 

a slr^le detcrr*.trumtai approximation to* the true wave function of the ground state of a sy3tem. 

We shall now go through the problem of setting up these equations '•- letvu,       s *iu*il then In- 

vestigate their nature and iwaning. 

First, we consider the variation method itself.   It is well known that very generally 

the differential equations of the type of Schrodir.^er's equation can be derived from variation 

principles; the reader acquainted with the general theory of the Sturm-Liouville equation will 

be familiar with this fact.   Schrodlnger,  In his fir it paper setting up wave mechanics,  set up 

* variation principle from which he derived his equation.   The Integral which he used Is slight- 

ly different from the integral  /u* H u dv which we are considering:   In place of the Laplaclan 

operator to represent the kinetic energy, the square of a gradient appears.    Schrodinger's 

form Is the correct and-more general way to write the variation principle, but the form whi'A 

we nave described can be derived from it in a great many cases,  and is satisfactory for most 

ordinary applications (the exceptions corne where there are surfaces over which the function > 

u has a discontinuous slope).    We do not wish here to give a general discussion of variation 

principles, but shall merely give a simplified discussion of the principle as applied to Schro- 

dinger's equation, sufficient for   our present purposes. ,   j 

Let us consider the energy Integral  /u* H u dv,  and let us make a small change in u, 

JO that It changes to u +  6u,  where  6u,  like u,  is a function cf the coordinates s«d >pin.   Of 

course,  we must make a corvespondlng change  6u* in u*.    Then the change produced in the 

energy Integral Is   /6u* H u dv • Ju* H 6u dv.    We wish to have this change a small quantity 

of higher order,   provided u remains normalized.    This proviso can be stated by saying that 

the normalization integral   /u* u dv is to be   unchanged,  or thai its change,  which we may 
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write as   fftu* u dv • Ju* &u dv,  is zero     We shall first shew that the second term in each of 

these expressions is merely the complex conjugate of the first.    This is obvious wiih lu« nor- 

malization integral,  where the second cerm may be written «s / &u u* dv.    With the energy in- 

tegral, it 13 also obvious with the potential energy term.   Thus let the potential energy oper- 

ator be V.    Then the second term in the variation of the potential energy integral is / a* V 

6u dv,  which is the conjugate of J 6u* V u dv,  since V is always real 

¥!\th the kinetic energy integral, we .must use Green's theorem.    Thus if we h-H a prob- 

lem with only one particle,  H would involve the operator V  •   Now by Green's theorem, 

/(u*\7    6a  -   5uV   u*) dv • / (u* grad   fiu  •   n  -   6u grad u*  •   n) da , 

where the right-hand side represents a surface integral over the surface bounding the volume 

of Integration,  and n represents the outer normal.    In the ordinary cases,  with SchrOdinger s 

equation, the Integration can be over all space, and the surface Integral vanishes.    Thus we 

see that the kinetic energy term in   /u* H   fiu dv is the conjugate of that it: / 6u* H u dv.   Our 

proof applies directly only with one particle, but the extension to many particles Is very sim- 

ple, using a many-dimensional form of Grcer.'s theorem.    We thus have shown that the second 

integral in both of our expressions Is the conjugate of the first.   If.then, we can demand that 

the variation  jSu* H u dv be a small quantity of higher order, for all variations    Su* for 

which the variation Jbu* u dv is zero, we shall have proved cur poir.t.  for ihc complex con- 

jugate r.f j ou* H u dv will also be small of higher order, and ihe complex conjugate of iSu* 

.. J.v ^rlll also be zero.   The result Is just a? if we varied only u*.  leaving u unchanged. 

In the preceding paragraph, we have merely asked how to state the condition thai the 

energy integral be stationary for all changes of u which leave u normalized:  we have not yet 

naked what results from this condition.   As a step in asking this question, we use the method 

of undetermined multipliers, which Is generally used when we have a variation problem with 

a subsidiary condition,  such as our normalization condition.   If It were r.ot for this subsidiary 

condition,  we could state the consequences of having the energy integral stationary at once. 

IT the Integral J6u* H u dv Is to oe a small quantity of higher order,  independent of  Su*.  we 

must clearly have H u everywhere zero, for <f it -Acre different from zero xor any value of the 

coordinates, we could let  6u* be different from zero only in that neighborhood,  and we should 

certainly find that the integral was not zero.    This Is the usual procedure used in the calculus 

of variations.   But when we have a subsidiary condition,  we demand not that H u be everywhere 

zero, but only that a linear combination of H u and of u, the quantity appearing In the other In- 

tegral J6u* u dv, be everywhere zero.    Let us write this linear combination Hu - Eu. where 

E Is a constant (which w» «h*ll shortly connect with the ordinary energy of the Schrodlnger 

problem).    If now »a demand that Hu - Eu = O.then we shall have  /&u* H u dv = E Jin* u dv, 

so that  / 6u* Hu dv will clear*? i>e zero for any variation  6u* for which J6u* u dv » 0, just 

as we desire.    But Hu  - Eu   -  0 Is just 5chr6dinger-s equation,  where now £ evidently Is the 

ordinary energy appearing in th»« .-'v.taMoP.    Thus *o show that the condition thai the energy 

integral JSu* Hu dv be stationary,  for any variation  6u which leaves u normalised,  is that » 

I 

' 
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satisfy Schrodtnger's equation.   This is the theor-fin which we wished to prove.   Of course the 
energy integral will differ by small quantities of higher order from its stationary value,   and 
with some types of variation of D it may Increase,  with other types of variation it may de- 
crease.    This is like the behavior of a function of several variables,  at a point where it is 
stationary.   Generally this point is what is called a saddle point,  and not a true maximum or 
minimum.   But clearly for the ground state of the system,  which by definition has the lowest 
energy' level, the energy Integral cannot decrease with any type of variation of u.  for if it did, 
we should eventually come to a still lower stationary value, and a lower eigenvalue,  which 
would contradict the postulate that v»« weic dealing with the ground state. 

The arguments which we have given are not presented with mathematical rigor, but 
the rigorous proofs can be given, and lead to the same results which we have stated.    Let us 
now see first how the variation method leads at once to the ordinary secular equations of per 
turbation theory.   Suppose we have a set of orthogonal function? u. . . u ,  and that we try to 
express « ?s a linear combination £(1) C,u. of these functions.   We ask what combinations 
best represent true solutions of Schrddinger's equation.   The integral   fu*(H - E) u dv equals 

£(*• J) Ci^j /ui* (H " E) ui dv-   We have seen that if we set the variation of this integral 
equal to zero,  when only u* varies, we shall obtain our desired condition.    In particular, let 
us vary u by allowing only one of the C,»;s to vary; in effect, we set the partial derivative of 
the integral with respect to C> equal io zero, not varying the C/s.    Then,  remembering the 
definition of the matrix components H.. of the energy operator with respect to the functions u,, 
and remembering their orthogonality, the equations resulting are £(j) C4(H^ - E$. ) • 0. 
But these are just the ordinary equations resulting from the perturbation method (see for In- 
stance QTM, Eq. (4. 1. 3)).   Thus specifically we show that the best uay to combine a finite 
set of orthogonal functions to g*>t a linear combination representing the true solution of Schrd- 
dinger's equation is by setting up thes< ordinary equations between them, following the pattern 
of the perturbation theory, and resultlt g in a secular equation for the energy. 

Now we are frmiltar enough with •>.* v»ri«tio" method to proceed to our problem of the 
Hartree-Fock equations.    We are required to set up a single determinant of one-electron or- 
bitals; to compute the diagonal matrix component of II with respect to this determinants and 
to ask how this diagonal matrix component varies when any one of the one -electron orbltals is 
varied in an arbitrary manner,  subject only to the condition the? this one-electron orbital re- 
main normalized, and orthogonal to each of the other orbltals.   The resulting variation n.ust 
b* » •mull quantity of a iiigUer order,  when any one of the orbltals is varied.    We may use 
(Eqs. (1.1) and (1.5) to compute the required matrix component.    Setting up the problem of a 
single atom of nuclear charge Z units, the integral   / u* H u dv is 

iM/uffrjM - V - 22/rj) u^) dvj 

• £ (pairs I, Ji/u^xj) Uj*(x2)(2/r12) u^) Uj(x2) dVjdv2 

- I(p*irs I. j: spin J • spin i) J ut*(*j) u4*(x2)(2/r12) u.'>j> u^x.) dvjdv2 . 
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We now vary one of the u*'s.  say u.*.    The resulting varied Integral is 

»«,*<*, M-Vj2 - ZZ/rjJu^XjJdVj 

on to discuss their significance. 

6. Significance of the Hartree-Fock Equations 

Before we take up the general Hartr^e-Fock equations,  let us examine the simplified 

form which they take when we ere only a product of orbitals as a wave function, rather than 

the determinants! function.   In this case, the last term on the left side of Eq. (1. 14) is miss- 

ing, tor this term, if we examine the derivation or Eq.  (1. 5), comes fiom interchanges of or- 

bitals which occur only with ihc determinants function.    Furthermore,  there is no require- 

ment in this case that the one-electron oroitals be orthogonal,  so that only the term for I « j 

/ 

•   lUr^/oii^U,) u^x^tf/r^) Ujixj) Uj(x,) dvjdv2 

-   I(J^i4 spin j - sp<n Vjbufixt) uj*(~2K2/ru) u^Xj) u^Xj) dv^Vj   . 

Now we wish to make this variation zero,  for all variations   6u,» which leave u,* normalised, 
r l l 

or. which have I* a.* u. dv = 0.  and which leave it c.thogonal to all other u's,  or which have 
f ' fX 

J u.* u, dv • 0,  or /6u.* u, dv = 0.    By the method of undcrtermined multipliers,  we may 

set a linear combination of all the various varied integrals equal to zero.    That is,  we may 

write our condition 

<-V,2 - ZZ/rj) u^xj) 

+ ZO^l) [/»j*(*2)(a/rl2)uj(*2)dv2]ui(«i) 
r t 1 *l,u) 

-  J&tU  spin j * spin i) jj Uj*(x2)(Z/rl2) UJ(XJ) dv2Juj(x1) 

The equations (1. 14) are the Hartree-Fock equations for the orbitals u (x).    W*» shall now go I 
I 

on the right side of Eq. (1. 14) is present.    Thus we have the simplified equation 

(-Vj2  - ZZ/r^u^Xj) 

4  X(l* i)[/Y(xzMi/ru) uj(x2) dv2] Ul(x.) (1.15) 

"   «lu«>l)   ' ' 
where we have used   • . in place of  X....    This equation has a very simple meaning.    The quan- 

tity £(j i I) Ju,*(x2)(Z/r12) u.{x2) dv2 is simply the electrostatic potential,  at point Xj,  of the 

citarge distributions n * a, of all ether electrons.    In other words,  Eq.  (1. IS) states that a. is 
J      > l i 

the solution of ar. ordinary Schrodinger equation for the motion of an electron in the field of the 

nucleus,  m'i :>f all the oihbi electrons distributed according to the wave functions u,.   The 
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energy     . ta the one-electron energy of this problem.    But this condition,  with a trifling reser- 

vation,  is just that to which Hanree was led by Intuitive reasoning,  and which he made the 

basis of his calculation.    The trifling exception is that the potential as determined from the 

charge distributions of all other electrons Is not generally spherically symmetrical,   pnd Har- 

tree used the average of this potential over all directions,  to get a spherical potential,  so as 

to be able to carry out the solution of SchrOdinger's equation.   We thus see how Hartree's 

method really gives the best one-eiectron orbitals,  provided we use a product cf such orbitals 

as a many-electron wave function. 

Now let us ask fhat is the physical meaning of the additional complications present in 

Eq. (1. 14).   In the first place, we can show that the right side cf Eq. (1. 14) can be simplified: 

we can always choose solutions u. so that the quantity   X,- forms a diagonal matrix,  and the 

right side of (1. 14) ca.i be rewritten as   i. u.(x.). just as we have written it in (1. 15).    We shall 

not give the complete proof of this statement, but can easily give the physical reason behind it. 

It is a characteristic of a determinants! function, ilka that of Eq. (1.2), that we can make up a 

new determinant out of it, by setting up new orbitals u.' .  . u ' which are formed from u^ .  .  uR 

by a unitary transformation, and the new determinant will have a value identical with the ori- 

ginal determinant.   It is obvious, then, that our variation method, which makes statements only 

about the determinant as a whole, cannot uniquely determine the u.'s.    Any set of orbitals de- 

termined from them by a unitary transformation must equally well satisfy the variation prin- 

ciple,  and her.ee the Hartree-Fock equations.   But we can Investigate the behavior of the ma- 

trix  X. - when we make such a unitary transformation, and we find that it transforms just like 

ordinary matrices.   It is possible, then, to find a unitary transformation of the u.'s which 

makes this matrix diagonal.   We do not lose In generality, then,  if we assume from the begin- 

ning that it is diagonal, and for most purposes this is a desirable feature.    We shall then as - 
sume it in our further work. 

The resulting Hartree-Fock equation has been the subject of a good deal cf discussion, 

and has been made the basis of considerable calculation.   Among those contributing to its under- 

standing were Dirac,' *    ' Brllloutn,'    ' and Hartree.'*""'   Th# oHcrinnl formulation of Fock was 

not so sti aightforward in the matter of the interpretation of the spin as the derivation we have 

given,  which resemDles more those of the writers just quoted.   Hartree and others have made 

numerical calculations, using Eq. (1. 14), for a number of atoms,  and the results differ sig- 

nificantly from those of the original Hartree equations.   By now, calmtatlons have been made 
(47) ior a good i»<*iiy »!oms, by one or the other cf the methods. *    '  The quantities forming the 

**P. A. M. Dirac,  Proc. Cambridge Phil. Soc. 26.  376 (1930). 

*5L. Brlllouln,  Les Champ; Self-Congjjtgnta dc Hartree et de Fock, Actualltes Scientiflques 
et IndustrleUembTTPj (HeT~°?.r: -e< •?!*     PErTS: V*T4) 

46D. R. Hartree and W, Hartree,  Proc. Roy. Soc. (London) A150,  9 (1935) 

For « very complete listing of the (.corns which have bee.1. invep'.ig«*ed by this method,  with 
reference* to the literature,  see the 1951 edition of Landolt-liornstevi,  physlt>alischc- 
chcmlsche Tabellen. 
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6.  SIGNIFICANCE OF THE HARTREE-FOt:K EQUATIONS 

last term on the left side of Eq. (1. 14), however, have been regarded as fairly mysterious 

and diffic-xit to interpret in a physical v»t»y. The present u»rit»*rv « <u»a recently discussed 

tnsse terms,  In such a way as to make their phvsical meaning ".lear. < 

In the first place,   we note that in the second sod th'»rd teir^s of Eq.  (1. 14),  we can add 

and subtract terms for j  • i,  without making any cluuige in the equation.    In the third term,  we 

can also multiply and divide by u.*(x.) u,(x.).    When we make these changes,  Eq. (I. 14) takes 

on the following form: 

(-Vt
2 - ZZ/r^u^Xj) 

+  10) [/»/<*2X*/r12) ujtxj) dv2] Ul(x,) 

-fl(j: "Pin j - spin I) /«••(«,) u *(x,)(Z/r12) u (x ) u.(x,) dv  1 <l- l6> 

L v&ryw JUi(Xi) ; 
• "i ur»xi' • 

The revised ;'orm (1. 16) of the Hartree-Fock equation shows that u, is the solution of a Schro- 

dlnaer equation with a Hamiltonian operator which is the sum of the kinetic energy, the poten- 

tial energy in the field of the nucleus, the potential energy In the field of all electrons (includ- 

ing the electron whose wave function we are finding),  r.rd a correction term,  the last on the 
i 

left of Eq. (1   16),  involving exchange integrals.   It is **>'-• Last term which we wish to interpret. 

Since we can be quite sure that tht electron does not »v«!'y exeri «> Coulomb interaction in it- 

self,  it is clear that somehow tnis last tarn :viu:-t correct for the interaction of the particle 

with Itself,  whi'-.h is erroneously included in the second term of Eq. (1. 16).   We may regard 

this last term on the left side of Eq. (1. 16) as repreae.ui.ng the potential,  at the position x. of 

the electron in question,  of a charge distribution at point x,, of magnitude 

u,*(y:) u *(x,} J,(X.) u,(x,) 
- ^(j»  »Pln j - spin i) X     i      t    f    l     1    z (1. 17) 

ul*(Xj)ul(xl) 

Since this charge density Is connected with '.he exchange term in Eq. (1. 16).  we may call it the 

exchange charge density. 

Wt can e«si'.y Drove two properties of the exchange charge density.    First, its total 

amount is one electronic charge (which equals - 1 in atomic units).   To prove this,  we integrate 

over dx^,    We use the orthogonality of the u, and u.'s (vfcfrh w- shall prove shortly), ts show 

that all tarms in the summation (I. 17) go out on integration,  except for j « I,  an-J this term 

Integrates to unity.   Secondly,  at the point x,  = x., the summation (I. 17) reduces to -£(j; 

spin J B »pln i) u *(x1) u.(x.), or the total density of all electrons of the s.-une spin as the ltn, 

at the position x..    These two properties will allow us to deduc . the general nature of the ex- 

change charge density, and its physical significance. 

481. C. Slater,  Phys   Rev. 81.  385 (i9al) 
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7JTE DETEPMINANTAL METHOD FOH ATOMS 

The potential energy r* the field in which the electron moves,  as given by the Hartree- 

Fock equation in the form (1.16),  is that arising from the nuclei; from all electrons of spin 

opposite to that of the electron considered,   as determined irom the wave f notions of tnose 

electrons of opposite spin; but from a charge distribution of electrons of the san:e spin equal 

to the total charge of these electrons, corrected for the exchange charge density.   That is, 

this charge distribution of electrons of the :axc spin adds up to one less than the total number 

of electrons of this spin, or it Includes all electrons of this spin with the exception of the one 

whose wave equation we are considering.   This is obviously as it should be.   The net charge 

density of electrons of this spin, corrected for the exchange charge, goes to zero at the point 

x. where the electron la located, for we have seen that at x,  * x., the exchange chaige density 

just cancels the total density of all electrons of this spin.   This is as if the electron whose 

wave function we were finding carried around with it a hole, centered on its position x.,  such 

that electronic charge of total amount one unit were removed from the immediate neighborhood 

of its position.   In other words, we may say that in the Hartree-Fock method each electron 

moves in the field of the nuclei, of all electrons of opposite spin, but in the field of a charge 

distribution of electrons of the same spin equal to the total charge distribution of such elec- 

tros*. -'iniiiiisueJ by a single electronic charge which is removed from this hole surrounding 

the position of the electron.   This hole is clearly a result, in a w*y, of the exclusion principle, 

v/hich keeps other electrons of the same apin away from it.   For this reason, on account of the 

close connection of the exclusion principle with the Fermi statistics, it Is often referred to as 

the Fermi hole.   Since the exchange charge density (1.17) has a different form for each wave 

function u.. we clearly have a different potential for each o* lm>sa wave functions.   Tne total 

exchange charge, however, equals one electronic charge in each case,  and its value v.nen 

x, • x. is In each case equal, so that the net size of the Fermi hole must be approximately 

the same for each wave function, even though it may differ in fthape and other details.   Thus 

we may commit no very great error if we replace the actual Fermi holes, which are different 

»o; each u., by an averaged value taken to bs the same for all u.'s.    We shall discuss this pos- 

sibillty in a later section, after taking up some of the properties of solutions of the Hartree- 

Fock equations. 

7. rruptetttes of Solutions of the Hartree-Fock Equations 

Before we go further In discussing the Hartree-Fock equations, we shall prove two 

properties of their solutions.   First, we shall prove that the one-electron orbltals u. derived 

from them are orthogonal.    We have really assumed this orthogonality in setting up the equa- 

tions themselves, but it does not seem Intuitively obvious, from Eq. (1. 16),  since as we have 

just seen each orbital is a solution of a SchrSdinger equation for a different potential.   To prove 
iUe orthogonality,  we proceed as nlways in Schrddinger's equation.    We set up Eq. (1. 16) for 

u., and multiply by uk*(xj).   Then ws set up the Hartree-Fock equation, like (1, 16), for ak*(xj). 

replacing i by W,  and taking the conjugate,  su'd i.iultiply .'As by u,\x.).   We iuen subtract o-.e 

<»^L«*.V"^r.. 



49T. Ksopmrvis.  Phyiics I,  104(1933) 
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i 
of these quantities from the other, and integrate over the coordinate dv..    Really,  w« should 

include ihe spin along with the coordinates in Eq.  (». 16),  aiiu sum over spin as well at Inte- 

grating over coordinates,  in each case.   On the right side, then,  we shai! hav* (*.    -   «. ) 
/ u. *(x.) u.(x.) dVj.    On the lefi side, mos< ot the terms will automatically cancel,  jusi as Ui 

the conventional casj ol Schrddlnge»-'sequition.    Thus we get rid of the Laplaciau terms by 

integration by parts in the familiar way,  and the potential energy terms in ihe field of ihe nu- 
cleus,  and In the field of all other electrons,  automatically cancel.   The only term which could 

give trouble is the exchange charge term.   But when we write this out, we find that it cancels 

too,  so thai we are left with the statement (« .  -  «. )   / U|.*(*i) ui(xi) dvi  a °«  wi>ich leads to 
orthogonality just as in a conventional Schrodlnger's equation.    We note that this is only on 

account of the special form of the exchange charge density.    The same proof does not apply, 

as we can readily verify,  for solutions of the ordinary Hartree equations.   Those solutions, 

in fact, are not orthogonal, and this is one of the great advantages of the Hartree-Fock over 

the Hartree equations, since it is so important to have orthogonal orbitals when using the de- 

terminants! method.   We notice another fact also, if we examine the proof carefully.   This is 

that the orthogonality of two orbitals connected with different spins -omes from the summation 

over the spin coordinates (which we have not written down explicitly, but which should be there), 

rather than from the integration over ths space coordinates.    V does not necessarily fellow 

from the Hartree-Fock equation*: that the space part of orbitals corresponding io different spins 

arc orthogonal tft each other. 

The second result which we shall prove regarding the solutions of the Hartree-Fock 

equations is Koopmana1 theorem. -        ihi» theorem can be verv simply stated in words, as 

follows:   the one-electron energy • . corresponding to a wave function u, forms e very good 

approximation to the lonicatlon energy required to remove the tiec'.-on with wave function u, 

from the atom.   Since these ionizatlon energies are well known experimentally, those corre- 

sponding to the inner electronic shells being th* x-ray term values, this forms a good and sam- 

ple rlieck between the calculations of the self-consistent field method and experiment.   The 

agreement between the  «,'s ai..' the term values was observed by Hartree In his earliest work 

on the self-consistent field.   In fact, It was this agreement,  as we have already noted, which 

was at the basis of the treatment of the self-consistent fle*d even before quantum mechanics: I ! 

we have ^uo'rd a number of workers who tried, partly empirically, to set up potentials such 

that the one-electron energies of particles moving in these fields would agree with the observed 

term values.    The agreement betweea the two Is better for the Hartree-Fock equations than for 

the Hartree equations,  but still It is surprisingly good even for the Hartree equations.   We 

shall now show how this agreement can be justified theoretically. 

Clearly the way to find :he energy required to remove a given electron from an atom is 

to compute the total energy of the atom with the giver, electron; then to compute the total en- 

i 
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ergy of the atom lacking this electron; and to take the difference.    This would properly jnply 

solving n separate Hartr«»e-Fock problem for the atom and the ion.    Aii the one-electron or- 

bltals would be slightly different,  since the screening of each electron would vary depending 

on whether the electron were removed or not.   There would be no way to compare the 1 *o prob- 

lems, that *?f the atom and the Ion,  except by numerical calculations.    Furthermore,  the ion- 

Ization energy Is often a very s>aail fraction of the total energy of the atom,  so that we should 

be calculating two very large quantities,  and taking the small difference, and this would he 

very inaccurate.   This method Is then not practicable,  in most cases. 

As a substitute, we may take advantage of the perturbation theory, which says that If 

we use a wave function which Is wrong by a s.nail quantity of the first order, the energy com- 

puted from It will b'. wrong by only a small quantity of the second order.    We use this theorem 

in the following way.   We use the correct Hartree-Foek wave function for the atom.   For the 

ion,  however, we m«k« up « determinants function out of the same one-electron orbltals found 

for the atom, but simply omitting the orbital related to the removed electron.   We then com- 

pute the energy of the Ion, using this determinants function, which of course Is slightly wrong. 

The energy is wrong by only small quantities of the second order,  so that u we suotract mis 

from the energy of the atom, the error in the resulting calculation-of lonlzatlon energy will be 

small.   But our calculations are made very much simpler, for now a great many terms In the 

energy are common to th»- calculation for both atom and Ion, so that they automatically cancel. 

In fact, when we carry through the whole calculation, ana subtract, the difference remaiuiitg 

is exactly the one-electron energy  «,,  all other U:uis cancelling.   This Is KoopmaOa' theorem, 

and we see that tt shows the identity of the one-electron energy, and the lonlzatlon «ucrgy, up 

to terms of the second order of small quantities.   We shall now shew how this result comes 

about, from detailed calculation. 

T'uc calculation of the energy of the atom is carried through exactly as In the preceding 

section, in terms of Eqs. (1.1) and (1.5).   For the Ion, we merely omit the terms involving 

the wave function u.,  provided we are interested in the lonlzatlon energy of the lv   electron. 

The difference,  or the lonlzatlon energy, then consists of just the terms involving the function 

u..    The energy of the stem minus the energy of the Ion,  which Is the negative of the energy 

required to Ionize the atom   Is then 

^•(xjH- 7/  - 2Z/rt) ut(x,) dvj / 

•   I(j)/V(^) u^x2)(2/rl2) u^J y*2) dv,dv2 

£(jj  spinj * spin t) Ju^x^u^lxj.KZ/r^) uj(x1)ul(x2)dv1dv2 

We now substitute Eq. (1. 16), whtcn is satisfied by u.(x.),  and we find at once that the result 

equals  •. / u.*(x.) u.(x.) dv.   a    « ., on account of the normalization of the u('a.    Thus we 

prove Kooprrans' theorem. 
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S.  EXTENSION OF THE HARTREE-FOCK METHOD 

g. Extension of the Hartree Foci; Meth?d 

In thr prcc-dir.j s-ctirr.s.  we have set up the Hartr-.-s-Fack equation,  and have proved 

some properties of tts solutions.    We remember that this method i» the appropriate one for 

finding the best one-electron orbttals for sotting up a single deteruttnantal wave function.    It 

has several drawbacks, however.    Ir. the first place, it ic rather h%rd to apply the r*«»t.<od, tn 

practice.   It involves the calculation of a good many exchange integrals,  and the orbital for 

each qurjntum number is a solution of a different Schrodinger one-electron problem.    Secondly, 

in many cases we really wish to use a combination of a number of determinants,  and in such 

a case the method is not directly applicable.   No straightforward way appears for really get- 

ting around these difficulties; but in the present section we indicate seme general lines of ap- 

proach for extending the Hartree-Fock method to cases of the interaction of many determinants. 

One approach is fairly direct.   Suppose we have a problem of atomic multiplets, for 

which a number of determinants must be used.   If this problem Is not very complicated, we can 

solve for the energies of the various multiple* levels, in terms of certain exchange Integrals 

(such as the F and G integrals encountered in the treatment of complex spectra given by the 

present writer).   The energy of the ground state of the atom, then, can be expressed in terms 

of such integrals, which in turn depend on the one-electron orbitals.   We then vary any one of 

the w.'a, in Ihl* expression for the energy of one of the states,  and arrive at a differential 

equation,  similar to the Hartree-Fock equation but containing additional tjrms, for this func- 

tion u..   These equations differ from the true Hartree-Fock equations only in that different ex- 

pressions appear for the exchange charge deu&ity.   The equations are not appreciably more 

difficult ic solve i>y direct numerical methods than the Hartree-Fock equations, and the re- 
(501 suits should be very good.   This method was used by Hartree and Hartree;    - In a study of the 

excited states of the beryllium atom; they set up separate equations for the orbitals tn the 

singlet and triplet state, and calculated separately the energy in these two states, getting much 

better agreement with experiment than bv the use of the conventional Hartree-Fock method. 
(51) The same method was also suggested simultaneously by Shortley. *    '  It has not been widely 

used, and would be- very difficult to apply if there were several multiplets of the same type, 

so that the secular ecuatlon of complex spectrum theory had to be solved numerically.    For 

simple cases where an analytical solution is p.-.-.^ibii-   however, it seers* a desirable pro- 

cedure.   There is,  however,  a drawback:   the orbitals for each stave cf the system are differ- 

ent,  and in particular are not orthogonal to each other.   The energy of each state must be com- 

puted for the whole system,  rather than getting lonization energies directly by use of Koop- 

mans' theorem.    For a light atom like beryllium,  :o which Hartree applied u<* methoa,  ">c 

total energy of the atom is not very big,  and it is not difficult to compute this energy foi coc* 

atate. and subtract to jet the multiplet separation.    For a heavy atom, however,  we should 

50D. R. Hartree and W   Hartree.  Proc. Roy. Soc. (London) A154.  588(1936). 
5lQ. H. Shc-iley.  Pfcy.~. Rev. so,   IC^Z (1)36). 
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b- subtracting one large quantity from another large q-.««intlty, and the Inevitable errors would 
be serious. 

A quite different approach to the problem would be, not to try to get the best orbitals 
to r«p:e»cnt the energy of the stat« by means J! simple complex spectrum theory, but rather 
to set uo many detenu Umi'cs,  and find linear combinations of them,  relying on the large num- 
ber of determinants for the accuracy of the answer,  rather than on the correctness of a few 
determinants.   In other words,  we should make extensive corrections for configuration inter- 
action) we should Include determinants describing excited configurations of various types. 
There Is much experimental evidence in spectroscopy for the Importance of such Interactions 
between configurations.   Thus when there are large experimental deviations from the simple 
rules of muitlplct separation suggested by the elementary theory of complex spectra, it often 
seems that these deviations may arise from the repulsion of states from different configura- 
tions which have proper symmetry and multiplicity properties so that they can have a non- 
diagonal matrix component of energy between them.   An approach of this type has not been 
carried through in detail, but with our present improved ability to solve large secular equa- 
tions, i: should not be too difficult to carry out.   If one wishes to do it, then the essential thing 
is to have a considerable number of determinants! functions representing different configura- 
tions, and orthogonal to each other.   This demands orthogonal one-electron functions, corre- 
sponding r.ct only to the ground state of the atom, but to a number of excited states, so that 
we cs. form determinants from a number of configurations formed from them.   We may hope 
that if cur orbitals and configurations are chosen property, the most important determinants, 
for determination of the low-lying energy levels, will be those with only a few outer electrons 
excited.   These would correspond to configurations with diagonal energies only slightly above 
the lowest state.   And it Is well known from elementary perturbation theory that states with 
diagonal energy close to each other have more perturbing effect on each other, other things 
being equal, than if they were further apart In energy. 

We have already pointed out that the Hartree-Fvck method, though It results In orthogo- 
nal orbitals, girst us only s small and definite number of those, corresponding to the orbitals 
occupied by electrons in the single determinants! state of the atom from which the Hartree- 
rock equations ara derived.   We «.....d more orbitals, corresponding to more highly excited 
states, for the determtaamel method which we have sketched above, and the Hartree-Fock 
method does net teU us now to get them.   We may use our intuition, however, to suggest an 
extension sf the Hartree-Fock method which could give us as many orbitals ss we d««ired.   If 
the Harirec-Fock equations were only of the simple form of Schrddlnger equations for one el- 
ectron, then we could solve this Schrddlnger equation for as man;- excited states as we desired, 
and these orbitals would all be orthogonal, by the fundamental orthogonality theorem of Schro - 
dlnger*s equation.   It seems very plausible, then, to try to replace the Hartree-Fock equations 
by an- ordinary SchrOdlsger equation, expressing the motion of the electron In a single poten- 
tial field representing sora**how tin; *ffect of tHc nuclei and th? -jiher electron*. 
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The first term of (1. 19) is just the total charge density of til electrons (since the index j goes 
from 1 to n). The second term is a correction or exchange charge, to be subtracted from this, 
•o that the net charge will correspond to n - 1 raluer than n electrons. This exchange charge 
density in (1. 19) is sim<'.ar v^ that In Er.. (1. !7). which we derive from the Harttce-Fock 
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8.  EXTENSION OF THE HAP.TREfc  FOCK MJfiTHOD 

Th?re ti a straightforward way in which this ran b« r»on«. though it does not seem to 
have been mentioned In the literature.    Suppose we have an antisymmetric function U(x,s, .  . 

*      a 

» » ), representing the motion of all n electrons.   Th\s is supposed to be a function which we 
arrive a\ In the process of solving a self-con»i*t«nt problem.   It rmy bo a single determinant 
formed from one-electron orbltals, or a sum of * finite nimher of such determinants: or it 
may be any approximation to the reel vave function of the svstem.  In some particular station- 
6iy state, either the ground state or some excited state.   Then we may ask the question,  if 
an electron Is found at position x. with spin s.  and If ail electrons move according to the wave 
function U. what is the average density of all other electrons, as a function of position, and 
hen.e what is the average potential exerted by these other electrons on the one in question, 
averaged over the position of the ot'ier electrons?   We know that the probability that electron 
one bi* at position x, with spin s., and that simultaneously electron two be at position x, with 
spin »2 la £(s3 . . •n)/u*(*l

a
1 • . xn8Q) U(xJs1 . . xQsn) dx3 .  . dxn.   TJe probability that 

electron one be at position x. with spin s., irrespective of what the others are doing,  is 
£(s2 . . s ) /u^x.Sj . . x s ) U(XJSJ . . x »n) dx2 • • dx .   Thus the probability that elec- 
tron two be at position x, with spin s2, provided we know that electron one is at position %i 

with spin s,, la the ratio of these two, or 

I(B3 .  . sp) jfu»(T1s1 . . xnsn) U(x2sr .  . xasn) dx3 .  . dxn I 

K»2 • • •x.)JU*(rlsl . . xnsn) U(xlSl . . xnsQ) dx2 . . ixn 

On account of the antisymmetry, we should have got the same sort of distribution for any one 
of the electrons 3 . . a as for the second electron. The total charge distribution of electrons 
2 . . a, when the electron one is at x^ with spin Sj, is then given by (n - 1) times the expres- 
sion above. This is a function of the coordinate x2 and spin s2 of the second electron, so that 
It takes account of the possibility that there may be different charge densities for electrons of 
the two spins: and since It depends -»•= »., these densities depend on which spin the electron 
one may have, so that we have the mechanism by which the spins of different electrons act on 
each other. 

It is Interesting to see what this charge distribution becomes for the special case where 
the wave friction U lss single determinant of orbltals.    In that case, taking advantage of the 
orthogonality of the orbltals,  we can easily carry '..-.•< *he in»*5»r»*«<w»s in (1. 18),  and we find 
that the charge density, (n - 1) times the expression (1. 1R),  is j 

„ IU)I(j) ".*(«!•,) u.(x1a,)u.*(x2s2)ul(x2s2) j 
J   2 z  J 2 * zoo \*(*si) «k(*i»i) 

! 
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equation.    To get the exchange charge In (1. 19) from that In (1. 17).  %e multiply by a factor 

ui*<x1ai) ^(xjS,) 

£{fc) ii^UjSj) ^(s|•}) 
(1.20) 

•i ul<xl«l> 

C Slater,  Phys. Rev. 81.   385 (1951). 

(1.21) 
i UH*1"1 

52" T 
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aitu sum over i.   The meaning of this Is clear.   In the Hartree-Fock method we find a different 

exchange charge density for an electron with coordinates x. and spin Sj.  depending on which 

wave function u.  it is in.    These exchange charge densities,  as v/e showed in Section 7,  have 

certain universal features:   :io matter which wave function the electron Is In.  tht. exchange 

chsjrge density stili integrates to one electronic charge. and st'l! approaches the same limit 

when x2,  s2 approach *r *j.   The exchange charge density (1. 19),  however, is the weighted 

mean of the densities (1. 17) for :he various states,  using the weighting factor (1. 20). which 

obviously measures the probability that,  if electrbn 1 is found at position x, with spin Sj,  it 

would be in the 1th orbital. 
It is the use of different exchange charge densities for the Schrodinger equations for 

the different orbitals which complicates the Hartree-Fock method.   The present writer*    ' has 

recently suggested that it could be simplified, without any serious errors being introduced, by 

using the weighted exchange charge density appearing in Eq. (X. 19), in plac* of the separate 

exchange charge densities (1. 17) appearing in the Hartree-Fock scheme.   We now see, how- 

ever, that the natural generalization of this scheme to the more general case where the wave 

function is a sum of determinants, rather than a single determinant, is to use the expression 

(1.18), multiplied by (n - 1), for the charge density of other electrons, to be used in comput- 

ing the potential function for the self-consistent field. 
Let us. following this discussion, write the Schrodinger equation for the uiic-eiectron 

orbital u., moving in the field of the nuclei. »nd of the charge densities of other electrons, as 

derived from the expression (1. 18).   To find the potential, at point x., of the charge density 

of other electrons, we multiply the expression (1.18) by 2/r12.  and integrate over the coordi- 

nates and spin of electron 2} and multiply by {»» - 1).   We may equally well multiply by the z'iir> 

of terms 2/r.,,  summed over all JI exctpt 1.   Each of the 2/rj. terms will give the same In- 

tegral, on account of the aymmetrv properties of U.   And the final answer, expressed in this 

way. Is more symmetrical.   If V(x.) is the pntmti«i »r»»rgy ox ti.e electron 1 In the field of the 

nucleus or nuclei,  then our Schrodinger equation is 

(- 7j2 • V(x,}) U^XJSJ) 

» j    &** •  •  "n> /U*<*181 ;  •  Vn^       •   • gAW '-'^l'l '  • Vnj dx2 '  -ton}      ,        . 

I I(.2 . . -„)>*<«,.! . • Vn>U<«l»l • • VJdx: •  • fc« J 
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We regard Eq   (1.21) as n very general formulation of the self-consistent field method.   The 

potential energy function is a unique function,  a function only of the pcsuiun ssid spin of the 

eiectron I.    T*MIS all one-eiectrou functions determined from it sre automatically orthogonal 

to each other (Lhou£h it is by no means true that the orbital parts of the functions c.as'.ciatsd 

with * spin are orthogonal to the orbital pstrts of those associated with - spin: tho orthogo- 

nality in that case comes from the spin part of the functions).   We can determine an infinite 

set of orthogonal orbltals by getting all solutions of (1. 2!).    We then set up, by whatever 
method teems best to us, an approximate antisymmetric wave function for the whole system. 

We may well do this by setting up a finite number of determinants functions, using the orbltals, 

following the methods outlined in the present chapter,  and getting the best linear combinations 

of these determinants.   We take that linear combination representing the state we are inter- 

ested In (for instance, the ground state), and regard that as the function U,  which enters in 

Eq. (1.21).   We then make, as our requirement of self-consistency, the condition that the U 

computed In this way from the orbltals u, s>*->uld lead to a wave equation (1. 21) which in turn 

'«.««. the same set of U.'B ad Its solutions. 

We have determined the equation (1.21) by intuitive arguments, essentially as Kartree 

did with his first rtatement of the method of the self-consistent field, rather than by using ar- 

guments based on the variation principle,  .< •» with the Hartree-Fock equation.   It is clear why 

this must be so.   We h:.«e already shown that if we use enough determinamal functions, we 

can get a correct description of the final wave function, no maf.*r what orbltals we use.   We 

may well ask, then, nhat Is the need of setting up our orbltals u. by a self-consistent method 

like that of Sq. (1. 21)?   Why not Just use any arbitrary orbltals?   The answer apparently must 

be giver, intuitively, rather than by precise logic based on the variation principle, hut it is 

this.   If we use solutions of the self-consistent field, then we shall expect that those deter mi- • 

nants formed from orbltals with the lowest one-electron energies  t i# filling up the lowest 

states In the usual way, will nave the lowest diagonal energies, and will come In in the most 

important way in the final linear combination of determinants.   In other words, by use of these 

orbltals,  we should be able to get a good approximation to the correct wave function vrtth rela- 

tively few determinants,  and we should be able to pick ou* these determinants by inspection, 

as those with the electrons In the lowest slates, or *Uh only a few excited electrons.   On the ; j 

contrary, with <:.'• which depart widely from »elf-consistency,  we should expect that far more 

determinants would be required to get a satisfactory approximation. ; , 

9. Free-Electron Gas Approximation to the Exchange Charge 

Though w-» hsw been able, in Eq. (i. 21), to sex up a formulation of the self-consistent 

method general enough to give us one-electron orbuais u; under all circumstances,  ••*'! it can 

sometimes be very complicated to apply in actual calculations.   A simplified version of the 

equation has b«en set up by *he present author,'    ' which preserves ;he main features of the 

53J. C. Slater.  Hhys. Kev. 81,  385 (1951). 
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correct method, but Is a good deal e«<i«r to use and nndei Mand.   We must remember that the 

electronic charge density represented by (I. 18),  multiplied by (n - 1),  represents the charge 

?f di »!e'.'trcn«,  diminished by the exchange charge density,  we may,  In fact,   use this as a 

definition of the exchaiig*- charge density.   This exchange charge density ha.} a total amount of 

one electronic charge;   this follow? at once from the fact that the intcg•.•«; of the expression 

(1. 18) over all values of x .,  and summation over s,, is unity,  -o that the total charge density 

represented by (n - 1) times (1. 18) is (n - 1) electronic charges.    Furthermore, the expres- 

sion (1. 18) Is zero when x.   • x,» and s.   = s,,  on eccount of the antisymmetry ci  u.   That is, 

the charge density of other electrons of the same spin as the first approaches zero as w<; &p 

preach -he position of electron one.   We may s«y, then, that the density of exchange charge of 

the same spin as the first electron approaches the total density of charge of that spin,  as we 

approach the position of the first electron. 

We may, then, very crudely, replace the exchange charge density of the same spin as 

the electron one by a spherical charge distribution,  whose density at its center equals that of 

all the electrons of spin a. at the point x., and of volume great enough to include one electronic 

charge.   The volume,  in other words, must be inversely proportional to the density of elec- 

trons, or the radius of the sphere must be inversely proportional to the 1/3 power of the den- 

sity.   The potential energy of en electron at the center of such a sphere will be Inversely pro- 

portioned to the radius of the sphere.   T'.us the potential energy will be directly proportional 

to the 1/3 power of the density.   In other words,  we approximately say that the potential en- 

ergy to be used in the Schrodlnger equation is the potential energy In the field of the nuclei, and 

of all the electro.ia, including the o'»ie whose wave function we ar<- ftn^'ng, diminished by a cor- 

rection proportional tr the 1/3 power of the density of electrons of tr.e iime spin as tliat con- 

sidered.    This replacement of all the exchange corrections by a term simply depending on the 

local charge density is obviously a great simplification, the gh of course it is not very accu- 

rate.   We shall find later, when we discuss magnetism, that it gives useful qualitative insight 

into the magnetic problem, in that •*-- potentials to be used for electrons of the two spins are 

not the same in a magnetic problem.   If there in a preponderance of electrons of + spin, say, 

at v. particular point, then the decrease of potential energy cf a * electron, at this point, on 

account of the exchange correction, will be greater than for an electron of - spin, so that the 

potential energy of the electron of • spin will be lower.   This distinction between the potential 

functions for electrons cf the two spins,  with consequent difference in the one-electron orbitals, 

should strictly be taken into account in self-consistent field work with atoms, but It has hardly 

ever bean considered in actual calculations,  up to the present. 

When it comes to making this approximation method quantitative,  v.e can take advantage 
(541 

of the free electron gas, for ..-hich the calculations can be made exactly.    BJocn, '    ' in the 

early days of quantum mechanics, discussed the magnetic properties of a fr»»-electron gas. 

54F.  Bloeh,   2.  Phvsik 57,   545 (1929). 
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9.  FREE-ELECTRON GAS APPROXIMATION TO THE EXCHANGE CHARGE 

Ke set up a single determinants wave function for such a gas.  using plane waves as the Uj's, 

filling up these waves far enough to accomodatc all rlrrtrsas.   Then he essentially calculated 

the charge dmunity of niher electrons in the neighborhood o? • !jJv»p «••»«*»•-<'«,   essentially by 

use of (1. 18).    From this he found the exchange charge density exactly, for this case,  and in- 

tegrated to find the corresponding correction term in the potential energy.   We do not wian to 

IUAC up this correction at this point,  since It Is concerned more with the problem of * solid 

than of an atom.   When we work it out. however, we find that the SchrSdinger equation for a 

function u.(x., +),  where this symbolizes an equation for a function corresponding to + sp*n, 

can be written 

(- Vj2 • V(x,)) Ul(x,.  r) +  J(p^x2)*pjx2))il/rll)dxzui(xv *) 

(1.22) 

with a similar equation for u,(xj,   -).   Here   P+(xj) and p.(xj) represent the ctiarge densities 

of charge of • and - respectively, at the point x., in atomic units, so that the term in  94  • 
* 1 / 3 

p_ represents the potential of all electrons, at the point x..    The term in ( p  ) '    is the ex- 

change correction,  of which we have been speaking.   The exchange correction In Eq. (1.22) is, 

as we have statel, taken from the case of the free electron gas,  and we are assuming that 

there is no great error if »c replace the correct exchange Interaction by this free electron 

value,  computed for tha same charge density which we actually have present.   This of course 

Is a crude assumption, but still, as we have stated, it is not qualitatively absurd.   Calcula- 

tions for the self-consistent fields of atoms, using Eq. (1. 22), have been made by Pratt, *    ' 

and he finds them in fairly good agreement with the more accurate Hartree-Fock method. 

We have now come to the end of our sketch of the methods to be used in computing the 

er.ergy levels of atoms: though no calculations have really been made following this complete 

scheme.    It involves finding a set of orthogonal atomic orbltals u.,  as solutions of a Schro*- 

dinger equation, which should properly be Eq. (1. 21), but which can be replaced by the cruder 

approximation (1. 22).    Having found these orbltals,  we set up a number cf dstermlnantal wave 

functions,  corresponding to the lower configurations of the atom.   We solve the secular equa- 

tion between these determinants functions, so as to diagonallze the er.ergy. taking full advan- 

tage of the properties of spin and orbital unguiar momentum.   When we have done this,  we ob- 

tain a wave function for eacn of the states derived from the secular equation.   Since we are 

usually more interested in the ground state than of any other, we then take this wave function 

for the ground .siate, Insert it, a« U, into (1. 21),  and find >. new Schordinger equation, repeat- 

ing th" process until we 1 *ve self consistency.    Or, If we are ualng (1. ?2), we compute the 

charge densities of electrons of + and - spin from the wave function,  and seek self-conslstenry. 

It is clear that this process will be more accurate, the more determinants we takes  and this 

55G. W.  Pratt, Quarterly Progress Report of th« Solid-Siuie and Moieruiar Theory Group, 
M. !. T .  July 15,   19b2. 
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rvjir.ber.   Ln tV.c l»st analysis,  will be fixed by th«* persistence of the computer,   and the capabili- 
ties of his competing machines. 
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CHAPTER 2 

THE HYDROGEN MOLECULE 

The simplc:.i quantum-mechanical problem with more than one atom is the hydrogen 
molecule-Ion, H * , the problem of t, single electron moving in the field of two hydrogen nu- 
clei.    This prohl»m of « single particle in the field of two cento: - attracting according to the 
inverse square law can be exactly solved, both In classical and quantum mechanics.    One in- 
troduces ellipsoidal coordinates, with the two centers as foci,  and finds that variables can be 
separated,  so that in quantum mechanics the problem is reduced to that of solving ordinary 

ID differential equations.   The solution, by Burriu,    ' has been of a good deal of qualitative value 
In understanding the nature of the problem of diatomic molecules.    Unfortunately, however, 
the separability does not h?i<* fc; any two-center problem except that Involving Inverse square 
forces,  so that It cannot be applied to any diatomic molecule, In particular not to the hydrogen 
molecule.   We must proceed by quite different methods,   and Heitler anO London,'  ' whose 
work we have already quoted, made the first major effort to understand the structure of this 
simplest diatomic molecule. 

This Heitler-London solution of the hydrogen molecule has been used so much, as a 
model for the solutions of more complicated molecules, that it will repay our very careful 
study.   One feature of 11, which w e shall discover at the outset, makes Us direct extension 
to more complicated problems Impracticable:   it deals with non-orthogonal orbltals,  and we 
have seen in the preceding chapter how Important It Is to have orthogonal orbltals.  A great 
deal of the literature of molecular theory is marred, as we shall point out in later chapters, 
by unwarranted neglect of the terms arising on account of this lack of orthogonality,   Never- 
theless we can recast the argument of Heitler and London ir. a form using orthogonal orbltals, 
and this we shall do, gaining in this way a starting point which can be extended to more com- 
plicated cas'.'S.    When we do this, we find that an alternative point of view, the so-called 
method o' molecular orbltals, is also included in our more general formulation.   The present 
chapter tahes up all these different approaches to the hydrogen molecule,  and discusses their 
interrelationships,  in such a wim that they really can c«rve a» utvdeis for our future work in 
more complex molecules and In solids.    We shall find most of the problems encountered In 
the later chapters foreshadowed by features of this simplest of molecules. 

''0. Burrau,  Kgl. Danske Vid. 3elSi.ab Skrifter.  Mat-Fys. Med. 7,   14(1927). 
2W. Heitler «Mtd F. London, Z. Physlk 44, 455(1927): see also Y. Sugiura. Z. Physlk 45, 
484 (1927), for completion of some maJn>mii.!cRi points lit*, unfinished in Heitler and Lon 
den's paper. 
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1. The HelUer -London Method \ 

As a first step, we remind the reader c* the Heitler-London method itself.   Heitler I i 

and London, we remember, wrote their famous paper in 1927, just after Heisenberg's 1926 
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paper dealing with resonance phenomena In many-body problems,  which we have d'scussed in 

the preceding chapter.    Thus they were writing before the formulation of the determinantal 

method or •?••* Pauli spin matrices,  and they worked entirely with functions of the coordinates, 

ae Hei^ehucrg had done in his treatment of the helium atom.    They argued in the following v.'-y. 

Let a represent a hydrogen Is wave function about atom  a,   «.nd b a hydrogen Is wave func- 

tion about atom b.   Let the coordinate ; of the two electrons be denoted by x. and x,.    We know 

that, at least when the atoms are widely separated, the ground state will correspond to the 

situation where one electron is on one aom, the other on the other.    Thus it could be repre- 

sented by the wave function a(x.)b(x2).    It could equally well be represented,  however,  by the 

other function b(x,)a(x^): these two functions will be degenerate with each other,  at infinite 

intemuclear distance.    When now we try to solve a perturbation problem between these two 

functions, we find at once that the suitable linear combinations are the sum and difference, 

a(x.)b(x,) i o(x.)a(x,),  which are respectively symmetric and antisymmetric in the coordi- 

nates of the electrons.   We can find the diagonal matrix components of energy for these two 

states, and find that the symmetric function has an energy minimum corresponding approxi- 

mately to that known to exist in the ground state of the hydrogen molecule,  while the antisym- 

metric function Indicates repulsion between the atoms.    By arguments similar to those used 

by Keisenberg In discussing the helium atom,  in the papers cited earlier, Heitler and London 

Identified the symmetric function with the singlet state, the antisymmetric one with the triplet 

state. 

After the development of the dettrminantal method, the present writer'  ' showed how 

this same irgfment could be stated in terms of orbltals involving spin as well as coordinates. 

-Thus we may make a table,  Table I,  showing how the spins of the two electrons can be dis- 

Table I 

State Spin of a Spin of b Total Spin 

I • • 1 
II + 0 
ur + o 
iv - - -1 

trlbuted among the two orbltals a and b.   We can set up four determinants,  associated with 

four assignments I -- IV of Table I.   Thus the determinant corresponding Xo state I is 

atXjW.j)       a(x2)o(s2) 

blXjW?.)      b(x2)a(«2) 

whore a represents the Paull ppin function,  wLU.>< t* one when s. correspond-, to a r spin, 

*.«*ro -when s} corresponds 'o a  - spin.   That in,  till* determinant can be written ja(x.)b(x,)  - 

3T   C. J?lc»er.   Phys   *i«v.  s».   1109(1931). 
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b(r.)a(x2)l o(s.)o(?2).    It is zero,   in other words,   uiuesr both electrons have •  spin,   and it 

corresponds to an antisymmetric function of coordinates.   Similarly the function IV is zero 

unless both electrons have   -  spin,  and it has the same antisymmetric dependence on coordi- 

nates which we h»ve just found. 

The deiei miMui.i. corresponding to state II is 

aUjMSj)       aU2Ws2) 

b(x,)p(s,)       b,x2)p(s2)   ' 

and that corresponding to III is 

WxpatSj) 

a(x2)«s2) 

b(x2)o(s2) 

where  p is the other spin function,  zero when the spin is •, one when it is -.   If we set up 

the matrix components of energy between states I -- IV, we readily find that there are no com- 

ponents between states I or IV and any other states,  as we expect from the fact that M„ for 

these states (designated total spin in Table I) is different from the values for states II arid II!. 

We cannot uncritically use the formulas of Chapter 1 for components of energy, for the orbitals 

a and b are not orthogonal to each other; but the problem is simple enough so that we can 

handle the situation in spite of the lack of orthogonality,  and check our statements.    We find, 

however, that there are non-diagonal components of energy between state* II and 111,  which 

are obviously oegenerate wttn each other, so that as usual we find that the correct ilnear com- 

binations are the sum and difference of II and III.    As we see by exper. lins the determinants, 

this sum and difference equal 

|a(x1)b(x2) + b(xj)a(x2)} {afs^Bis^ t (J^1;u(s2)J , 

where the upper signs a»-» for the sum, the lower signs lor the difference.    We see, in other 

word'i,  that the sum gives the same antisymmetric function of coordinates which we observed 

for states I and IV.  and a symmetric function of spins,  while the difference gives a symmetric 

function cf coordinates,  an antisymmetric function of spins. 

It is then clear that the antisymmetric function of coordinates appears three times, for 

states of M- <»  I,  0,   - I,  and hence this must correspond to the triplet state,   wnile the ;y"' 

metric function of coordinates appears just once,  with Mc = 0,  and hence aw**, correspond 

to the si'iglet.    Thus we ver.fy the conclusions c: lie'Mer ami Loiuiur. regarding those functions. 

We can make these conclusions surer,  if wc wish, by computing the matrix components of the 
2 2 2 

square of the T.is..;»-do of the spin, S      •  S      + S    . between these states,  as we did In x y z 
Chapter 1. Then we find unambiguously that our assignment of spins Is correct; though here 

again, as with the matrix of energy, we must examine our steps vlth cars, on sc-fmn! cf the 

lack of orthogonality of the orbitals a and b. 

ii 
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Th» net result,  then,  is that the orbital part of the wave functions associated with sin- 
glet and triplet respectively arc a(x.;i>(x2)   - b(x.)a(x2),   where the +  sign goes with the sin- 
gle!,  ;«e  -  sign with the triplet.    These functions are rot normalized,  but wc shall normalize 
them in a moment.    Then the diagonal matrix component of energy with re«5po<-t to thes* func- 
tions must represent the energy of the two sfates.    Let us compute this energy.    First we 
normalize.    We assun-j a and u io be separately normalized;  but the overlap integral 

A= JatXjMxj) dxj  . 

where we disregard the complex conjugate nature of the wave function a.  since it is real, will 
not be zero.    Thus we fine that 

2 

so that the normalised wave functions are 
1 

y|a(x1)b(x,) 1 b(xj)a(x2)}     dx,   = 2(1  t A2) , 

(a(x1)b(x2) * b{xl)a(x2)} . 

2 2 2 2            2^2 
r2b       r12       rab la r2a rlb 

We must now find the diagonal matrix component of the energy operate- with respe«.i io these 
two functions. 

The energy operator is 

-V - V,1 

where r.    is the distance between the first electron and the nucleus a, etc.,  r, , is the dis- 
tance between the electrons,  and - .,  which we shall denote by R, the distance between nu- 
clei.   We remember that the functions a and b are hydrogen Is wave functions about the re- 
spective nuclei.   Th»« we have 

2 _,.. »       _2_ 
la 1     v 1'      r,_   ~v~l' -»"!' 

where the coefficient..- 1 multiplying a(x.) on the right side of the equation arises because thfe 
energy o' •"» hyut ogen ground state is - 1 atomic units     When we use this relation,  we find 
that the energies of the two states are given DV 

• - A 

where 
Ho -/»2(";)b2(x2)(-i- - -i- - -i- + ji-Jdxdx^ 0 J *•  Vrab  r3b  r2a   r12y  * L 

1 J       l       l        c       i  vr^  rlb  r2a  r12/  i 

-1— 

.J_. 
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1.  THE HEITLER-ICNHOW METHOD 

We may rev/ritc these expressions as 

where 

H    » £  •  2J •  J'.    H,   = =£-  •   2KA •  K'   . (2.2) 
°      R R 

J   »   - </'a
2(x1)(2/ilb) dxj 

J' = /a2(x1)b2(x2)(2/ru) dx^ 

r (2- 3) 

K' = /a(x1)b{x1) a(x2)b(x2)(2/r,2) dxjdx^ 

We have here chosen our notation, as far as the expressions J, J', K, K' are concerned, to 

agree with that of Pauling and Wilson. Introduction to Quantum Mechanics, McGraw-Hill, a 

co"v»nt»nt reference to use in looking up further details. 

It was now shown in the papers of Heitler and London and of Sugiura,  quoted above,  how 

to compute the various integrals concerned.   Their values are cs follows: 

A   = e"R(l • R • R2/i 

J    «  - 2/R   • e"2R(2 + 2/R) 

K   -  -e"R(2 +  2R) (2.4) 

J'   • 2/R  - e'2R(2/R +   11/4 +  3R/2 + R2/3) 

K'   - |  f- m"2R( - 25/8 +  23R/4 +   3R2 • R3/3) 

i |A2(Y +    in R) •   A'2 Ei( - 4R)  -  2A/t El( - 2R)|] , 

5   L 

where 

A'  = eR(l  - R + R /3) . 

where y is Euler's constant 0.5 7722,  and where El(x) is the integral logarithm (tabulated, for 

instance,  in Jahnke-Emde's tables).   In Table II «e give values of these quantities,  computed 

for a number of values of internu:le?.r distance (in atomic units).   The table includes also an- 

other quantity L,  which we shall need later.    From the quantities given in Table II we compute 

values of H , Kj, iuml Z+.    These are given in Table III. 

From Table III,  we see thut the ilr.glet stete,  whese energy is E+,  has a minimum of 

energy at about 1. 5 atomic units,  corresponding *o a stable grrund state of the moleci::c,  while 

E_,  t"€ triplet state, is repu'sive.   The well known energy curves,   ploUed from these values, 
are shown in *!«.   :      in th»«e tables end curves *e ha>c *he predictions of :N* r.lr*ighu\>r*><\rd 

-«>1 
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THE HYDROGEN MOLECULE 

Heltier-toMon theory. 

Table II 

R A J K •M K' L 

9.5 0. 9b03 >• 1.7927 - 1.S196 1.2103 1.1353 1.1816 

1.0 0.8564 - 1.4587 - 1.4715 1.1090 0.8733 1.0141 

1.3 0.7252 - 1.1674 - 1.1157 0.9807 0.5937 0.8107 

2.0 0.5865 - 0.9451 - 0.8120 0.8519 0. 3683 0.6162 
2.5 0.4583 - 0.7811 - 0.5746 0.7368 0.2132 0.4512 
3.0 0.3485 - 0.6601 - 0.3983 0.6396 0.1170 0.3215 

4.0 0. 1893 - 0.4992 - 0.1832 

Table III 

0.4951 0.0312 0.1540 

R "o Hl =• E_ 

0.5 1.6249 1.3298 - 0.4629 1.7979 
1.0 0.1916 - 0.1794 - 1.9930 - 0.5904 
1.5 - 0. 0208 - n  3233 - 2.2255 - 1.3619 
2.0 - 0.0383 - 0.2403 - 2.2073 - 1.6921 
2.5 - 0. 0254 - 0.1455 - 2.1412 - 1.8480 

3.0 - 0.0139 - 0.0726 - 2.0834 - 1.9252 

4.0 - 0. 0033 - 0.0203 - 2.0228 - 1.9824 

i I 

Fig.   1 
Energy of hydrogen molecule as function of lnternuclear 
distance   Heltler-London theory. 
L. ,     2,    state. 

V £    ground state. 
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2. MOLECULAR ORBJtTALS FOR THE HYDROGEK PRC3LEM 

2. Molecular Orbitals for the Hydrogen Problem 
Wc have already mentioned the computations associated with the use of non-orthogonal 

orbitals, as in the Heltler-London method.    These complications are not serious in a two- 
electron problem, but ih?y rapidly become enormous as wc go to pr oblems of more and more 
*l»ctrcn=.    Hence the Rattier-London method in its elementary form is not suited for genera- 
lization to more complicated molecules.   We shall now show,  however, that we can set up or- 
thogonal orbitals,  linear combinations of the two orbitals a and b used in the Heltlcr-Londsr. 
method, and that when we express the problem of the structure of the molecule in terms of 
these orbitals,  ii takes a farm suitable for generalization. 

As a guide in setting up these orthogonal orbitals,  let us give a little attention to the 
method of the self-consistent field, as applied to molecules.   In Section 8, Chapter 1,  we set 
up a general self-consistent method which can oe applied to molecules as well as atoms.   We 
set up, in Eq. (1. 21), a differential equation for the one-electron functions u,.   T'uese repre- 
sented the motion of an electron in a certain averaged field of the nuclei and the other electron. 
We cannot hope to solve this differentiti equation exactly for a molecule; but at least we can 
hope to set up linear combinations of our atomic orbitals £ and b which approximate as well 
as possible to solutions of this self-consistent field problem.   Now in the hydrogen molecule 
problem, we s'wuld fird the potential to be symmetric in the two nuclei; we shall later examine 
this problem of the meaning of Eq. (1.21) for this problem.   And it is well known that in a two- 
cecter problem with symmetry In the nuclei, all solutions ft Schrodinger's equation must be 
either symmetric or antisymmetric when the nuclei are interchanged.   TJ.at is, the functions 
u. must be either even or odd with respect to reflection in the plane midway between the two 
nuclei, with respect to which the nuclei are in the positions of mirror images.   But there is 
only one way in which we can set up combinations of a and b  having this property:  the only 
even function is a • b, the only odd function, a - b.   These functions are automatically or- 
thogonal to each oth«r, since their product is odd with respect to reflection in the mldplane, 
and contributions to the overlap integral on one side of the midplane cancel contributions from 
the other side.   Let us then set up these two orbitals.   We may call them molecular orbitals, 
«'""' tW» Mm* »»»• »»*•»• Halted •= foiuilsns of the self-consistent field problem for molecules, 
and out' functions are aoprojilmatinns to thos* solutions. 

We shall call the even function u , the odd function u (it is often convenient tc use the 
symbols g and u, abbreviations oT the German words gerade and ungerade, to denote even and 
odd functions)-    We readily find thai the normalized functions are 

u («) - »& • M»),.   u (x) . JfeL^lj- 
• ^2(1 •  A)        u ,/2(l  - A? 

We can now set up a table,  similar to Table 1,  giving the possible arrangements of the two 
electrons in these two orbitais.   TWs table, Table IV.  i» given below. 

In Table IV, we hi've Included six states.  ra»Uer than ibe four given in /able I.    Let us ' ' 

j 

\ 
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THE HYDROGEN MOLECULE 

T»ble IV 

tate Spin of ug ~u Total Spin 

I •   - 0 
II +        " 0 
I!I + + 1 
IV * - c 
V - + 0 
VI - - - I 

see why this is.   If we find a one-electron energy for the orbitals u   and u , we find that u 

lies lower than u ; it is p general property of the symmetric and antlsyn>metric solutions of 

two center problems that the symmetric solution has a lower energy than the corresponding 

antisymmetric one.   Thus In the language o*' the self-consistent field method, the lowest state of 

the molecule might well be assumed to come from the configuration where Ixrth electrons are 

in this lowest stationary state u .    The electrons would have to have opposite spins, and to 

form a singlet state.   It Is this state which is represented by I, in Table IV.   We should ex- 

pect the next higher states to come when oi.e electron Is left in the u   state, but one excited 

to the a   stats.   In this case, since the electrons s<*e not equivalent, we have a singlet and a 

triplet.   These states come from the states III -- VI of Table IV:   the states III, VI,  and the 

sum of IV and V,  represent the three components of the triplet, and the difference of IV and V 

Is the singlet, juit as In our discussion of the Heitler-London method, only now we are deal- 

ing with orthogonal one-electron orbitals,  sc that we can use exactly the method of Chapter 1 

In solving the perturbation problem.   Finally, the highest state would come when both elec- 

trons were excited to the u   level, so that we should have the singlet given by state II of Table 

IV. 

The two states which we omitted from Table I. corresponding to states I and II of 

Table IV, would be those In which both electrons were in atom a, or both In atom b.   That is, 

the wave function would represent the situation where we had one positive ion,  and one nega- 

tive ion,  so that we call such states Ionic states.   We know experimentally Ui&t it requires a 

considerable amount of energy to remove an electron from one hydrogen atom,  and attach it 

to another atom.   Thus these ionic Mater, correspond io rather high energy levels of the hy- 

drogen molecule,  and we may expect that It will not make a great deal of differ* nee in the 

wave function and energy of the ground siaie,  whether we include them in our calc jlation or 

not.   We shall *»Ur actually carry out the extension of the Heitler-London calculation to the 

ens* where these ionic States are present, and shall find u» 5»ct that they do not make much 

difference In the HeiUer-London method,  so that *"e understand how we could get a good value 

from the four states of Table I, while on tne contrary we really need the six states of Table 

il: 
It Is now very informing to take our definitions of u   and u .,  and actually form the rie- 

terrr.lRintsl >r.ve •••notions connected with the six states of Table IV.   We m«y as well im- 

mediately form the sun^ and difference (properly normalised) of stains IV tnd V,  since we 
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2.  MOLECULAR ORBITALS FOR THE HYDROGEN MOLECULE 

•» 2 
already knew that thcr; are the z -divinations which will diagonalice the quantity 2 ~  :• S      + 

2 * 8, .   When w« work out the functions, and write them in terms of a 22* K   *f find the fol- s 
lowing: 

L. a(l)a(2) • b(l)b(2) • a(l)b(2) • b(l)a(2)  «(1»(2) - 6(1)«2) 
2(1  • A) -A. 

n, X1M2) • bp)bU)  -  ,(l)bU)  - b(l),(2)   »(1»(2)  -P(1,M2) 
2(1-4 </* 

Uh        »(1W3)  - a(l)b(2)   a(l)a(2) 

«/2(I - a*) 

rv+„t>xi)nj2) - ao)b(2) »maa + WJI«& (2,5) 
«/2(l  - i?) 71 

vb   am^m P(DK») 

„,   „. «(Da(2) - b(l)b(2)   o^flZ) -   ftl^) . 
Vl(l - 4?) •/* 

When we examine these wave functions (2. 9), we see that they have some resem- 
blances to the Eeitler -London wave functions, and also some differences.   First we notice 
ess thingi  the triplet wave functions, the functions denoted by ffi, IV • V, and VL are identi- 
cal with the triplet functions given by the Heltler-London method, so that as far as they are 
concerned, we shall get the same answer by either method, and there is nothing more to do. 
We have, however, three singlet states, I. U, and IV - V, rather than the one singlet of the 
Heltler-London method.   This is only natural, since we have started with six states rather 
than four, and clearly to get the corresponding three singlets out of the Heltler-London meth- 
od, we should have to include the txs ionic states there.   Let us sec how that would have 
worked out.   The corresponding wave functions would have been simply 

.m./>» *P)P(2) -   gtl)«U)     w„>u.., afna(2l - flflW*) ,, 41 

5/2 yi 

But now It can be shown that all real solutions of the hydrogen molecule problem must have 
wave functions which are either unchanged, or which change sign, when we reflect the whole 
Wave funciion in the mldpisse between the two nuclei, or when w: Interchange the rclee cf 
atoms a and b.   Thus if we set up the non-dlagonaJ matrix component between the two states 
r." Eq,. (i 6;, we fiaa this sc-u^auent differr^t from k>»-o,  e&J a pcrtui-h«t'.on problem set up 

! 
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Just between thesr two slates would result in solutions which would be proportional to the sum 
and difference of thes* »«•»».   These functions, even and odd In the nude!, respectively, are i 

a(l),m • bQ)b(Z)    «d)g(2) - P(l)o(2) 

(2.?) 
a(l)«(2)  - b(l)b(2)    41)9(2) -_ P(1M2) 

72(i   -   ^) 7)     ^^T 
We now notice first that the second of the states of I3q. (2. 7) Is Identical with the state 

IV - V of Eq. (2. 5).   in either csse, this is the only singlet state which is od* is tl.e inter- 
change of the nuclei.   It is convenient to havs r notation to describe the-various properties of 
a state, and this notation is commonly set up in such a way that we would describe this state 
aa   £  .   The superscript 1 stands for a singlet, just as in an atomic configuration; the sym- 
bol   £ *• analogous to S is aa atomic case, and indicates thai we have aero component of or- 
bital angular momentum aloag the axis of the molecule; and the u Indicates that the state is 
odd (ungerade) in the nuclei.   Similarly the triplet stste would be denoted   £  , since we ob- 
serve that It also la old In the nuclei.   We are left, however, with two singlet states even in 
the nuclei* which we symbolise   £ , the g (geraUc) standing for even.   In the Heitler-London 
method, these arc the orclnary singlet state, and the ionic singlet state given by the first of 
the two functions In Eq. (I. 7).   It la clear that the state I. Eq. (2.5), In the molecular orbital 
method. Is the sum, ant*, the state U the difference, of these two singlets given by the Heltler - 
London method (except that when we remember the normalisation constants, I and II are linear 
combinations of the Kettier -London functions, but not ss simple a> the sum and difference). 

We are now ready to consider the matrix components of the »n»r«jy with * aspect to the 
six states of Eq. (2.5).   There are of course no mstrlx components between two different 
states of different multiplicities.   Furthermore, there are no matrix components between an 
even ar.i an odd function In Interchange of the nuclei) for In such a case, the contribution to 
ths energy iniegral from one half of space Is csnceled by the contribution to the other.   In 
other words, the only nan-vanishing non-diagonal matrix component of energ*- will b* between 
the iwo   Y    states I and II.   Similarly in the Heltler-London method, the only non-vanishing 
component will be between the   £   non-ionic and Ionic states.   Since there are two such I 
st»t*>9, we must solve a quadratic secular equation, which we may most conveniently solve 
between the states I and U of Eq. (2.5), aince these are act up in terms of the orthogonal or- 
httals u   and uu.   The final answer, however, will be the same as if we set up a secular equa- 
tion between the   £   aon-loric snd ionic states of the Heltler-London method, for the two 
functions of one method are linear combinations of tne two functions of the ether.   We shall i 
shortly solve this secular equation.   We notice thet by introducing the function* of Eq. (2. S), 

2 2'' 
In which each one is written so as to make S      + S      • S     diagonal, and in which bach tzr. 
In even er odd in th~ nuclwl, we have secured the maximum simplification of the secular equa- 
tion which is p-j*4tbl«.   Tho symmetry in i he nuclei plays a role iiere somewhat similar to the 

; 
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2. MOLECULAR ORBITALS FOR THE HYDROGEN MOLECULE 

orbital angular momentum in an atomic problem. 
It >o iww a tfimple zr.i straigJrtforward task **% set up the trairix components of energy 

between the various funct}""*. of Eq. \c. 5J. We can do this directly In the form written, •where 
the functions are expressed in terms of a. and b. Or we can set up the matrix components of 
the one- and two-electron operators with respect to the orthogonal orbitals u and u , and set 
up the matrix components of energy from these by the rules of Chapter I. One method is 
about as convenient as the other, in this case, axu* by either method we set up the components 
in terms of the integrals defined in Eq. (2. 3), and tabulated in Table 11. We find that we need 
just two additional integrals.   These are 

L ^/a^XjW^MxaKZ/r^dxjdXj . (2.8) 

which is tabulated in Table II, and 

/a2(x1)a
2(x2K2/ru) dxjdx2 - 5/4 . (2.9) 

By methods similar to those of Rattler and London's paper, it can be easily shown that L is 
given by 

L. e-R(2R •» • £> + .-
3R(-i- ±) . (MO) 

We may now write down the matrix components of energy.   In the first place, for the 
states I sad II In Eq. (2.5), we have the following diago.ial and non-diagonal matrix compo- 
nents: 

a?1 , -2 + | • HUB » fig t m t 2,L • »/•) 1 «       I* •*) (j + ^2 

»  .2 + i + («J - 2KaXl - A2) • (K' • J'/2 • S/SKl • A2)  - 4AL 
R /i _  ^)2 

+ (•»*• 2KK1 - A2) • 2L(1 •  A2) :  A(&/4 • J' + 2K') 
"        (1 -   A2)2 

•„...•{• 2H - *> • <*' • JV2 - 2L • »/«> 
22 R        (1 -A) (1 .  ff 

.      2 • 2   • (2J - *KA)(1 - A2) • (K' • J'/2 • 5/8K1 + A2) - 4aL 
R (1-A2)2 

. ( - 2JA • 2KH1 - A2) » 2L(1 • a2)  - A(5/4 » J' • 2K') 
(1      A2)2 

<2.il) 

U      2(1 -  A2) 
1, com- The two   JV energies will be the solutions of the secular equation formed from these 

ponents.   Next, for ihe    £    state, the energy has already been given as E_, in Eq.  (2. 1) 
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i, Finally, for the    £    state whose wave function Is i^dircted as IV - V Is £q. (2. 5), the energy 
is 

? + * 
R (2. 12) (2J - ?KA - K'  +  5/4)          , 

<1   -    A2) 

In Table V 7a give values of Hj j. H22. H1?; the two energies E(  £  ;   and E(  £  )   which arc 
i ihe two solutions of the quadratic secular equation; and the energy E(  V ) of the state (2.12). 

Table V 

0.5 

1.0 

1.5 
2.0 

2.5 

3.0 

4.0 

"11 

- 0.4550 
- 1.9719 
- 2.1945 

- 2.1616 

- 2.0676 

- 1.9656 
- 1.7908 

H22 

4.8109 

1.40/? 

0.1173 

- 0.5536 

- 0.9256 

- 1.1505 

- 1.3730 

n12 

0.2553 

0.2679 

0.2840 

0.3034 

0.3248 

0.3474 

0. 3915 

- 0. 4674 

- 1. 9930 

- 2.2289 

- 2.2170 

• 2.1535 

- 2.0935 

- 2.0256 

1 

u 2 

4.8232 

1.4288 

0.1517 

- 0.4984 

- 0.8397 

- 1.0225 

- 1.1382 

3 

Et1!) 
u 

2.3089 

- 0.0547 

- 0. 7937 

- 1.0854 

- 1. 1984 

- 1.2384 

- 1. 1994 

Zu-  *V In Fig. 2, we show the energies of all four terms,     V T Y ,     >   , as a function of 
**gl      **g2      **u     **u 

internuclear distance.   We also show, for comparison, the quantities H.. and H,,. the diago- 
nal energies of the two states I and n of Eq. (2.5), formed from single determinants of mo- 
lecular orbitals, representing the configurations in which both electrons are in the orbital u * 
and uu> respectively. 

mm* w> «*'•: !«*fca: \atx; 

Fig. 2 
Energy .if hydr ugen molecule as function cX internuclear distance. 
Full curves, energies ss derived from secular equation. Dotted 
curves, diagonal energies of* V e*.si*i constructed?; OEI mcJecu- 
iar orbital wave functions,  without considering interaction. : 
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We can now draw a number of conclusions from our c.-vlculations.   In the first pizzc, 1 
lat us compare the energy K( V   \   of Table V. which represents the ground state as obtained 
by making linear combinations of our six determinants,  and the energy of the state S. of Table 
III,  which represent the Heitler-Londou approximation to the same state.   It is clear from the 
comparison that the two ag.ee very closely.   The energy E(" Y   )   Is slightly lower than i£+, 
as it must be by the variation principle; for E( £  )   is the energy of the best combination of 
the rieitler-London ground state and the ionic atate of the same symmetry, and hence by the 
variation principle must have a lower energy than the energy of the Heitler -London ground 
stats Itself.   But clearly the improvement in energy is very minor.   Neither energy la « very 
good approximation to the actual ground state of hydrogen.   The minimum at 1.5 atomic units 
is at about the correct internuclear distance to agree with experiment, but the binding energy 
of slightly under 0.23 atomic unite is only about three quarters of the observed binding energy. 
Clearly the correction of this error is not to be sought by including ionic states in our calcu- 
lation.   We shall see later, by direct examination of the wave functions, that we do not ac- 
tually make much alteration of the wave function of tho Heitler-London ground state by Includ- 
ing a contribution from the ionic atate.   The energy of the state ( £ )   is so closely the same 
as the Heitler-London E. that we cannot tsll the difference, on a ffgure of the scale uaed in 
Fig. 1 or 2. 

Next, it is interesting to observe the limiting energy to which the two states   £   and 

£     tend at infinite Internuclear distance.   They both go, as we can easily see from Eqs. 
(2.11) and (2.12), to the limit -2 4- 5/4.   Here 3/4 represents the Integral of Bq. (2.9), the 
Coulomb repulsive interaction of two electrons both on the same atom.   This Is the approxi- 
mation furnished, by the present wave functions to the energy of s positive and a negative hy- 
drogen Ion at Infinite distance.   We represent the negative Ion by having both electrons In the 
same orbital a on atom a.   The energy is than the same as for two neutral Morns, except for 
the repulsive Interaction of the two electrons on the same atom.   It Is now clear -»hy these 
two states   T   and   Y , are missing In the usual Heitler-London formulation, sln*e that 

**u g* 
formulation disregards the Ionic atates. 

A further tntereatlng observation concerns the diagonal energlea Hj, and H22 °' tne 

two ataiea I and H, In Eq. (2. 5).   These energies go at infinite separation to the limit - * • 
5/9.   The reason for this Is clear from the wave functions, ss written. In Eq. (2. 5).   Here It 
Is plain that each of these states, at infinite separation, goes into an equal mixture of the 
Siitler-Londou ground state, and the Heitler-London Ionic state.   Hence we should expect the 
energy to be the average energy ot these two states, as It Is.   Putting It another way, in either 
the function u   or u , the electron has equal chances of being found In either atom.   At Infi- 
nite separation, then, there are chances of 1/4 that both electrons be in atom a,  1/4 that both 
be in atom b, 1/4 that the firat btint, the second in b. «r.d 1/4 th-t .*-..- second be in'a, the 
first In b.   The net result 1s * lift; parses: chance of an ionic slate.   The interaction between 
these two states I anJ H. resulting from the secular equation, puahes the states apart, and It 
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is clear that this repulsion of the states must persist to Infinite inter nuclear distance, in or- 

in fact, tha* the non-diagonal matrix component Hj - responsible for pushing them apart, as 
given in Eq. (2. 11}, do*- actually ipprcach the limiting Y«lue of 5/8 at inflrUe distance, so 
that there the two correct energies are ( - 2 • 5/8) t 5/8. 

It Is Interesting to consider the actual values of the diagonal energy H,., as given in 
Table V, aao compare with the energy of the Heltler-London ground state E. from Table III, 
or with the energy E( T  )   of the best arotmd state from Table V.   We see that. In the neigh- 

1        a 1 *"e'2 ^ 
£  )   aodE(  £  }*     Still another way of expressing thi 
states    T       and   * ^     apart by equal amounts from 

hie can be verified easily either front our form.'.'as or 

bori.ood of the mlatmua, H.. Is nearly as low as the correct energy le-'«l.   In other words 
ihe state L In which both electron: are in the molecular orbital u . has a diagonal energy 
which is quite a good approximation to the best energy, near the minimum.   This Is the basis 
of the method of molecular orbitals, which we shall discuss in the next chapter.   In that meth- 
od, the wave fusctisa of s. molecule is written as a single determinant formed from one- 
electroa molecular orbitals.   These molecular orbitals are generally approximated, as we 
are doing here, as linear combinations of atomic orbitals,  so that the method is often known 
by that name (abbreviated LCAO).   In the general case, a» here, we snail find that the diago- 
nal energy of such a one-determinant function goes to t*o high an energy at infinite separation; 
but jomeilmes it can form quite a good approximation to the actual molecule at its observed 
tnternuclear distance.   We fthall find later, too, that the method of enerjy bands, as applied 
to solids, is an extension of this method to solid*, and that it has the same convenience. In 
that the wave function is written as a single determinant, but the same weakness, in that the 
limiting behavior at large internuciear distances is wrong. 

Since the states l aad Utri orthogonal to each other, the sum rule applies) irat is, 
the sum of the unperturbed energies equals the sum of the perturbed energies.   In other 
words, the sum of Hll and H,2 equals the rum of E{  £ )   and E( £ ) , or tha average of 
HJI and H,2 *qu*ls the average a£ E( £ ). *«* E( £ )..   Still another way of expressing this 
Is that the perturbation pushes the two 
the diagonal energies Hj'j and B^.   This 
from cur tables a* values.   We also have another perturbation problem to which the sum rule 
applies:  that between states IV and V of Table IV.   This results In the state*    V   and   T . 

u **u 
Here the two unperturbed states axe degenerate with each other, so '.hat the diagonal energy of 
either one lies midway between the energies of   £    and   £    as given In Table V cr Fig. 2. 
It is'Interesting that this diagonal energy is very nearly the average of H^ and H22 (though 
not exactly).   The energy H j l represents the energy cf ine st =t* wiih both electrons In *he u 
orbital* •tales IV or V represent the enei-gjr of the state with one electron in u^ <m* ui u « 
and the state IL with energy H, ., Is thai with both electrons In u .   The fact that the acargy 
of state IV or V Is nearly midway between H.. and H22 'lts in w**^ * one-electron interpreta- 
tion of these states:   raising one elect von from state u_ to u   raises the energy from H. j to 
the energy al IV or V, and r-r^lng the other electron raises it to H22«   Both of these Involve 
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2.  MOLECUI.AH ORBITALS FOR THE HYDROCEN MOLECULE 

approximately the same amount of excitation energy.   This excitation energy is what would be 
computed by the molecular orbital method for molecules, or the cacrgy iiajv, fi.«thod Jar sol- 
ids, ss s messure of the energy required to change the one-electron energy as the electron 
goes from the symmetric to the antisymmetric orbital.   This energy, for lnstanca, goes to 
sero at Infinite lntcrnuclear distance.   We »*• by looking at Fig. 2, however, he? violently 
modified the molecular orbital picture becomes, when we apply all the perturbations.   The 
lowest and highest states are pushed apart from the energies H,, *ind H„ to E(   T ), and 

IT* * 1 ~* g 1 3 
S( £  ).• ud the intermediate states are pushed apart to the energies of    >        and     T  . 

g 2 u u 
We shall find later that similar things occur in the molecular orbital and energy-band theories, 
and there t» iters the most striking changes come about at large lnternuclear distances. 

An Important observation is connected with the sign of the exchange integral, which 
has pushed the two states   £   and   J]    apart.   From the simple theory of the spin degeneracy 
of two electrons, as sketched in Chapter 1, we see that when we have two states like IV and V, 
one corresponding to an electron of + spin in an orbital u., an electron of - spin in another 
orbital u,, and the second corresponding to having the spins Interchanged, we shall find the 
perturbed states split by an exchange Integral 

Jvfijiy) V(*2) u2<xl> ui(*2K2/r12) dx^ • <2' l3> 

provided the orbitals are orthogonal.   Such an integral Is necessarily positive.   For from its 
form it represents the Coulomb interaction energy of a charge distribution UJ*(XJ) u,(x.) on 
itself.   Such as electrostatic energy can always be transformed, by methods familiar in elec- 
trostatics; to an integral of « E /2. where  «   is the permittivity of free space. E the elec- 
tric field, over all space.   Since this integrand is everywhere positive, the Integral must be 
positive.   This sign is such that the triplet will always lie below the singlet, as we have in 
this case, witl* the   £   lying below the   £ .   Another cess of the same result is found in 
atomic two-el •ctroa spectra, where the triplet always lies below the singlet.   This is a spe- 
cial case of Hand's rule, given empirically In the days before the development of wave me- 
chanics. According to which the multiplets of highest multiplicity tend to lie lowest in an 
auoinic spectrum. 

This rule is completely dependent on having orthogonal orbitals,  as we see by com- 
parison with the cane of the Heltler-London method, where the orbitals are not orthogonal. 
The interaction between states II sad in in Table I is of ;••-* the same sort which we have here, 
with that one exception} and yet the singlet lies lower In the perturbed problem, as we see 
from Fig.  1.   The separation here depends on the exchange Integral H.. of Eq. {2.1), which 
Is wriiien out la detail In Eq. (2.2).   When we examine the terms of HJt we see that the terms 
la 2/» jD wt!* 2/r.   arc *h* on** which come In with negative sign, and which outweigh the 
positive terms, and result in a negative exchange Integral H.,  as ~c sec ir. Tci/lr 31.   These 
terms h*c»««ei iiy vaniau if the orbitals a and b are orthogonal.   Thus we see that any ex- 
planation of the binding of (he moircule, resulting in a singlet ground state, in terma of • spin 
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degeneracy,  a.s in the method of Heltler and London, is impossible if we use orthogonal or- 
bitals.   We can sea this more clearly in the next section, where we set up orthogonal orbitals 
A asd B,  rather similar to a and b in that A is concentrated on atom a  B on atom b, and 
yet orthoronallzed to each other.   When we use these orbitals, as we shaD see. the triplet 
ntate lies below the singlet, and we are forced to take «KU> account the interaction with the 
ionic states to get a correct picture •_•" th- grs-i-,;1 state.   Let us now proceed to thi* method 
of describing the moiecui*. ior comparison with those s.1 ready used. 

3. Ortbggonallxod Atomic Orbitals 

The molecular orbitals u   and u   are not the only orthogonal combinations of the or- 
bitals a and b,  which we can use for expressing our problem in terms of orthogonal orbitals. 
We can, of course, set up an infinite number of orthogonal combinations of a and b, but most 
of these would not appeal to us, for we naturally wish a certain amount of symmetry a* re- 
gards the nuclei.   Our functions u    and u   are particularly convenient in this way, in that the 
determinants! functions formed from them, as given in Table IV, automatically show the prop- 
erty of being symmetric or antisymmetric in the nuclei.   The original functions a and b have 
a somewhat different symmetry property:   one goes into the other when we reflect in the mid- 
plane between the atoms.   Let. us ask if we cannot set up two orthogonal orbitals A and B, 
linear combinations of a and b, which have this s?me property, so that the perturbation prob- 
lem set up in terms of them will have as dose a resemblance as possible to the Heltler - 
London problem.   The answer is that we can.   Let us demand that A • c ja • c^b, B • c jb + 
c,a» where c j and e   are to be chosen so as to make A und B normalized snd orthogonal. 
We can impose this condition ecslly, and the d3tcrmir*&iion of Cj and c2 becomes a simple 
problem in algebra.   We find without trouble that 

c,  -       JL  •       j        .    c, « ~-i :  - —±= . (2.14) 1 

We soe that c, is positive, c, negative.   Furthermore, in the limit as lnternuclear distance 
becomes large, when A goes to zero, c. approaches unity, c, approaches zero, so that in this 
limit A and B approach a and b respectively.   At smaller distances, however, Cj decreases, 
c. increases numerically, so that A is made mostly of a contribution of a, but supplemented 
by a contribution of b with opposite sign, Just large eno-.^h to make the two functions orthogo- 
nal.   We shall indicate the relation of these orthogonal orbitals to others which have been pro- 
posed for molecular and solid-state problems la a later section. 

Let us now -set up our perturbation problem in terms of the orbitals A and B, and see 
how its results work out.   By sow, we realise that the final states will be exactly the same as 
those found by the method of molecular urbltak., or as found by the E«ltler-Tjcr.don method 
*unr'"~-- i.ied by ionic states.   Sut the steps encountered in getting the results wili 'oe quite 
differ*' at.    What TT ZTZ really doing is exploring a number of different methedr of caU-jlatton, 

-68- » 



3. ORTHOGOKALIZBD ATOMIC ORBITALS 

to see which on* ts most convenient for generalisation to probiemo of more complicated mole- 
cules.   We can set up a table, like Table I wr Table IV, indicating the determinant*! states 
which can be constructed out of the orbitals.   By now. we realize that we must use all six 
possible determinants, so that while we have the four states like those of Table I, in which 
one electron Is in orbital A, one in B,  w* must also have the two states is. r.hich bcth elec- 
trons are in one orbital.   We can make linear combinr'.iona of thmnm determinants, as before, 
tc take advantage of our information about spin and symmetry.   Thus tne four states analo- 
gous to those of Table I will combine into a triplet,     £ . and a singlet,     £  .   The two ionic 

u g 
states, in which both electrons are in A or both in B, will combine into two singlets, sne of 
the nature of   £  , the other   £  .   When we do this, we find, as we should expect by now, 

3 1 
tiiat the wave function" for the   £    and the    £    states are just as in the two previous meth- 

tt " lr " ods, so thai we hare no new problem here.   Only the two    £   • f* different. 
Let us denote as    £     the state formed from the two oeterminantsin which one elec- 

tron is in A, one in E, and as 
•*  1 *. " 

that in which both are in one orbital, analogous to the 
ionic state in the Heitler -London method 
following; 

We then find that the two wave functions are the 

ll'< ^g 

a(l)b<2) -r bjlj«(2) -  A{»0W2) • b(l)b(2)}   ^.^ _ g^^ 

a(l)a(2) • b(l)b(2) -  A{a(l)b(2) + b<l)a(2)}   a/\)p(2) - Kl)at2) 

«/2(l - A*) 2 

(2.15) 

The matrix components of energy between these states, which we shall denote HJJ, H.2> 
are given by 

. 2 • I  • UJ - 2KAX1 - A2) • (K' • J'/I • 5/8>(i • A2) - 4AL  . (5/4 - J-) 
* (1 - A2)* 2(1 -  A2) 

Hi 

H 11 

»22 
,  *- + (2J - 2KAW1 - £\ • (K' + J'/2 • 5/8H1 •  A2)  - «AL + (5/4 - J') 

R /i - A*\Z m (1 A2)2 3 (2. 16) 

H 12 
. (- 2JA+ 2K)(1 - A2) • 2L(1 » A2)  - A{5/4 + J' + 2K') 

(1 A2)2 

By comparison with Eq. (2. 11), it is =le«r that the roots of the secular »qu*.icr. formed from 
these matrix components, derived from the ortho£";.iJi«ed atomic orbitals, will be \h_> same 
as for the secular equation formed from the ?on»ponenta of Eq. (&• 11), formed from molecular 
orbitals.   In fact, the Interrelation between Eqs. (2. 11) and (2. 16) In so close that we can im- 
mediately read off the component: r* E", (2. It) from the entries of Table V.   In Fig.  3,  *s 

113 1 
show the energies of all four states   £    ,     £  ,.       £  . and   £  , for comparison, *s in 
Fig. 2. and *h* energies H, ( and H72 coT»»?uiea irom Eq. (2. 16), the diagonal matrix c«m- 

! 
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MTtMUCUM   DSTWCf (ATOMS UMTS) 

Fig.  3 
Energy of hydrogen molecule as function of inter nuclear distance. 
Full curves, energies as derived from secular equation.   Dotted 
curves, diagonal energies 01    T   states constructed from orthogo- 
naliced atomic orbital functions, Vithout considering interaction. 

ponsnts cf energy for the two states    £    and    £     of Eq. (2.15). 
We can now draw some rather striking conclusions from the results of Fig. 3.   The 

stats    £     Is the one formed irom orthogonalized stomlc orbltals A and B, In just the same 
way that the ground state ot the Ueitler-London method is formed from the ordinary atomic 
orbltals s and b.   In contrast to the Heitler-London ground state, ahown in fig.  1,  which 
shows Dittoing almost equal to that of the best xuuctlon which we have set up, the state    £     of 
Fig. i shows no binding at all.   The binding arises entirely In the secular problem between 
the two ststes    T     and    T    .   In other woi ds, using orthogonalized atomic orbltals, it is 

I 8 r*. ' lr»   " imperative to carry out the nixing of the two states    £     and   £    • of which the second is 
analogous to the Ionic «tat« in ths hotter -London method.   This It a contrast to the Hettler- 
London csse, where we have already seen that mixing in some of the ionic state makes a very 
small difference in ths floa? energy of the ground state.   W» can see from Eq. (2. IS) why 
there is this difference.   The state    £, . as we see from Eq. (2.15), is mads up of a con- 
tribution frwn the function e(ljb(2) • l»fl)«{£). which Is the Heltw-London ground stats, but 
also a contribution, proportional to A. of the function a(i)a(2) •• b(l)b(2),  which is the HeiUei - 
London ionic state.   This latter function, coming in as A increaseb, or as the atoms get 
closer together, completely neutralises the attraction found in the Heitler-London ground 
state, and result* in a repulsive state, as seen 'n Fig.  3. 

i 

II 
! 
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it is clear froci quite a different argument that this state must be repulsive.   Vhe two 
states    ^     aau    ^    are aenvea irem a se'uir.r equation between the two states in which or- 
bital A has an electron of + spin, B haft ens of - spin, or vice versa.   This secular equation 
is like the Heltier-London secular equation, with the exception that the orbltals are orthogonal. 
Since they are orthogonal, the exchange integral between them must be positive, and the trip- 
let state must He below the singlet.   We see from Fig. 3 that this is indeed the case.   Fur- 
thermore, the rather small separation between singlet and triplet shows that this exchange 
Integral is numerically small, in complete contrast to tb<» Heltier -London csse.   Thus we see 
in stUl another way that the use of non-orthogonal orbltals is a necessary feature of the 
Heltier-London method.   On the other hand, we must realise that It is only the simple Hettler- 
London method in which ionic states are not considered which is dependent on this use of non- 
orthogonal orbltals.   The beauty of the Heltier-London method is that we do not have to solve 
a secular equation (aside from the trivial one involved in separating the singlet and triplet 
states; in order to get the ground state* the wave function con be written down by Inspection. 
Onca we include tonic states, however, we must solve a quadratic secular equation to find the 
ground state, and we have seen that the final result of solving this secular equation is the 
same, whether we use the Heltier-London functions including the ionic states, or the molecu- 
lar orbital states, or those formed from orthogonal atomic orbltals.   It is then this more gen- 
eral procedure, including ionic states, and using orthogonal orbltals of either the molecular 
or atomic variety, —hich *!ve» «>» a method which can be generalised to the case of more com- 
plicated molecules. 

4. Comparison of Various Wave Functions 

In the preceding sections we have examined i»uree different starting points, all leading 
to the same final result:  the Heltier-London method supplemented by ionic states, tts lucotod 
of molecular orbltals, and the method of orthogonal is ed atomic orbltals.   It Is interesting to 
intercompare the wave functions resulting from these methods, so as to see, if possible, what 
their relations are.   We have seen that all three starting poicis result in identical wave func- 
tic.    for the   £    and *£u states, so th^t we have no problem of comparison to carry out 
hare.   It is only with the two   T _ functions that *s have differences.   We can writs these two 
functions,    £   . and   £tf2. as linear combinations oi the Heltier -London ground state and 
ionic statet as linear combinations of the molecular orbital states I and L! of Eq. (2. 5); and as 
linear combinations of the orthogonalised orbital states of Eq. (2.15). 

In examining the interrelations between these various functions, l< is useful to use the 
concept of the scalar p* va«ct of two vectors in a very literal sense.   If we have two normal- 
ised functions u. cr.d !•,. m know that we can regard them as unit vectors in a function space, 
and as far as these two vectors are concerned, this space is merely a plane, so that it is 
.-.d.t'.t?.c i.-. graphical iiscussLon.   Then the Integra'.  / u,<x) u,(x) dx is analogous to the scalar 

' i I 
I 
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product of these two vectors,  or to the cosine of the angle between them.   We can then exhibit 
all the functions considered in our present discussion as unit vectors in a plsne, and can find 
the angles between them.    Let u» find tfic angles between th» vprioua vectors,  so that we can 
exhibit them graphically. ' 

We know first, of course, that the two molecular orbital functions of Eq. (2.5) are or- 
thogonal to each other? that means quite literally that the vectors representing them are at 
right angles to each other.   Similarly the two funwiiont* of Eq. (2. 15) are at right angle.* to 
each other.   We may well first ask, what is the relation between these two sets of functions? 
If we take the scalar product of one of the .f,.»nctlona of Eq. (2.5), and one of those of Eq. 
(2.15), we find that it la 1/./2".   This is the cosine of 45°» in other words, the two orthogonal 
vycisr* of *JJI* *cl form Vfae bisectors of the angles between the two orthogonal vector* of the 
other set.   We can in similar ways find the angles between the other sets of vector*.   This 
we find that the cosine of the angle between the Heitler -London ground state and the ionic state 
is 2 A/0 •* A2)-   This is zero at infinite internuclear distance, where A is zero, so that in this 
limit the vectors are orthogonal; but at smaller distances it approaches unity, and the vectors 
became parallel to each other.   This is the fundamental reason why we made such a small 
change in the energy of the Heitler-London ground state by adding some o: t»:e ionic state:   we 
were really hardly changing the wave function at all. though we were writing it in quite a dif- 
ferent way. 

It is easy in similar ways to find the angles between all the various functions which we 
have considered.   Thus we find easily that the cosine of the angle between the Heitler-London 
ground state function, and the molecular orbital ground state function, as given by function I, 
Eq. (2. 5), is (1 • A)/v/2(li a2).   For the angle between this molecular orbital ground state 
function, and the final ground state function arrived at by solving the secular equation between 
states I •*>«' If, Eq. (2. 5), we must remember that the final function may be written as a linear 
combination T.U. • T,U,, where U., U2 sre the functions I and II of Eq. (2. 5).   From the 
linear equations determining the T's, we see that T2/T j • Hj,/(H22 -  E). where Hi2, H??, 
and E are given in Table V, the E for the ground state being denoted as E( £ J» la tnat table. 
Since Uj and U2 are normalised and orthogonal, we know that Tj    + T2    • 1, and that fur- 
thermore Tj itself is the desired cosine of thn angle between the function Uj and the linear 
«ii-bisstisn TJUJ + T2U2-   We then find at once that 

T.   •  — 
1  " ,/» • Hl22/(«22 " •? 

Using these relations, we can then find the angles between the various vectors, or 
functions, in question.   We show these in Table VI.   We have referred all iheae angles to the 
direction of the final function representing the ground state, as zero, so that ihe final function 
representing the other   T „ state is in every case 90°,   We show the angles of the following 
functional  the Heltl<:—L>t. -dov. ground ststet the Heitler-L»!*ion ionic btatet ths molecular 
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Table VI 

R H-L Ground State K-L lor.ic State       M-O Ground State O-A-O Ground «tate 

0.5 1.6° 4.0W 2.8° - 42. 2° 
1.0 0. 1 8.8 4.5 - 40.5 

1.5 - 2.2 15.9 6.9 
2.0 -4.3 24.9 10.3 - 34.7 

2.5 -5.6 35.2 14. 8 - 30.2 

3.0 - 5.6 46.0 20.2 - 24.8 

4.0 - 3.0 65. 6 31.3 - 13.7 
m 0.0 90.0 45.0 0.0 

trl-ilil ground atetet and the ortbofonalUed atomic orbital ground state.   Prom 'hese. we can 
gat the angle of the molecular orbital excited state by adding 90° io the angle of the molecular 
orbital ground state, and can get the angle of the orthogonaiised atomic orbital excited state 
by adding 90° to the angle of the orthogonaiised atomic orbital ground state.   We observe that 
the angle of the molecular orbital ground state is 45° greater than that of the ortbogcaalUed 
atomic orbital ground state, as it should be. 

Ths firs; striking observation from Table VI is the closeness of the Heitler-London 
ground state to the correct wave function, as shown by the smallness of the angle between 
them.   Through the whole range from infinite distances to small distances the angle is only a 
few degrees.   We also see how small is the angle between the Heitler-London ground state and 
ionic state for small interatomic distances, though of course these two functions become or- 
thog?n.U »* i^fiaue distance.   It is this smallness of angle which, as we have already pointed 
out, makes it relatively unimportant whether we introduce some of the ionic state to correct 
the Heitler-London grou.vi state.   Then again, we notice the small angle between the molecu- 
lar-orbits! ground state and the correct function, at small inter nuclear distances.   It is this 
small angle which vesults in the approximate correctness of the molecular orbital function 
near the actual liiternuclear distance.   On th* other hand, we see that this angle approaches 
45° at infinite internuclear distance, explaining the failure of the molecular orbital method at 
large distances.   Finally we note that, though the orthogonallxed atomic orbital ground state 
is correct in the limit of infinite internuclear distance, it becomes extremely poor near the 
actual internuclear distance. 

With this comparison c£ -•»« functions, we have finished our study of the various ap- 
proximations to the hydrogen problem arising from simple use of determinants! wave functions 
based on the Is atomic orbltals on the two atoms.   A comparison of the type discussed in this 
chapter seems to have been first given by the present writer,' ' In « paper in which the results 
were presented graphically: the calculations on which the graphical discussion was based were 

4J. C   Sla*e?. Phvs   Rev.  2*. *09 (*?30>5 41. 255 (193?). 
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Identical with those of the present chapter.   A later discussion by Welnbaimv • carried 
through similar calculations, but extended them by varying the Is atomic functions out of 
which the molecular functions were constructed; these Is functions were given variable pa- 
rameters which were varied as a function of Utternuclear distance, to get a minimum energy 
for th« around state,  resulting in appreciable improvement in the wave function and e »ergy at 
the observed tatet nuclear distance. 

Discussion of the comparison between the various wave functions, of the sort given in 
the present section, was given by the present writer' ' In a paper whose main purpose was to 
examine the usefulness of the orthogonalUed r'omlc orbltals for problems in molecular struc- 
ture.   Functions of this type had been introduced by Wannier* ' for use in crystal problems, 
and had been extended to molecular problems by Lowdin, * ' who has also made much >tse of 
them in the study of solids.   We shall have much further use for functions both of this type, 
and of the molecular orbital type, in our further study. 

It should not be thought that a comparatively simple treatment of the hydrogen mole- 
cule, such as we have discussed in this chapter, represents all that has been done on this im- 
portant problem.   We have presented these simple calculations only on account of their direct 
application to further problecs of more complicated molecules.   There have been, however, 
a great many papers written on ibe theory of the hydrogen molecule, though we shall not quote 
many of them here.   We give later in this report a very full bibliography of papers on all 
branches of the theory of the electronic energy levels of molecules, and many papers in that 
bibliography deal with hydrogen.   Many of them were undertaken with a view of throwing light 
oa more complicated problems of molecular structure, sad we shall comment on them at suit- 
able points in later chapters.   Two of them, however, ere so straightforward that they de- 
serve some comment at this point. 

In the first place, one very obvious improvement In the theory as we have presented it 
would be to vary the sise of the atomic orbltals out of which we nave constructed our wsve 
functions, in a way depending on internuclear distance.   At infinite separation, it is reason- 
able that we should use hydrogen orbltals, but as the nuclei spproach each other, the problem 
approaches that of a helium atom, which it reaches when the nuclei come into contact.   This 
helium atom has a self-consistent solution in which the wave functions are hydrogen-like, but 
corresponding to an effective nucl««r chirg; ac£r<"r two units than ones as a matter of fact, 
hydrogen-like wave functions corresponding to a nuclear charge of 1. 6875 units prove to rep- 
resent the best approximation.   We should expect, then, that we could Improve matters con- 
siderably if we carried out an analysis just like that of the present chapter, but used for each 

*3. Welnbsum, J. Chem. Phys.  h 593 (1933). 
6J. C. Slater. J. Chem. Phys.  19, 220 (1951). 
70. Wsnnler, Phys. Rev. 52,  191 (1 $27). 
*P. -O. Lowdin, J. Chem. Phys. 18, 345 (1950). 
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•4. COMPARISON OF VARIOUS WAVE FUNCTIONS 

tnternuciear distance an atomic orbital which would not be proportional to e" , the hydrogen- 
like function ("rtwre r is in atomic units),  but e"^r,  where  Z is an effective nuclear charge, 
which may be expected to vary from  1 at infinite separation, to 1. 6875 as the separation goes 
to sere.   It is easy to carry out this calculation; all the integrals are essentially as in the 
present chapter, but with.factors multiplying them which are as simple as Z or Z .   In the 
final answer for enei-gy, then, we vary Z to make the energy a minimum, for each internu- 
clear distance.   Such a calculation was first made by Wang, * ' and was extended by Weinbaum, 
in the paper already referred to, and has been used and extended by other writers.   It makes 
a very significant improvement in the energy, reducing the discrepancy between the observed 
and calculated energies of the ground state, at the equilibrium distaiice, to about two thirds of 
the valur. found by the Heitier-London method. 

A very much greater improvement was made in 1933 by James and Coolidge, 
work has become.a classic of careful numerical solution of Schrodinger's equation.   James 
and Coolidge gave up the attempt to build up a wave function by starting with atomic wave func- 
tions, but instead considered directly the form of the differential equation, and the best meth- 
ods of approximating its solution.   Let us consider the problem in the following way (though 
this is riot precisely the method James and Coolidge used).   The first electron may be de- 
scribed fry three variables, of which two are coordinates in a plane passing through ths elec- 
tron and the two nuclei, and the third is the angle of rotation of this plane with respect to a 
.'Ixed plane through the nuclei.   Similarly the second electron may be described by two vari- 
ables in the plane passing through it and the nuclei, and by the angle of this second pi JT-- 

The whole wave function of the ground state will not depend on all of these six variables, how- 
aver: for on account of the fact that its component of orbital angular momentum around the 
axis of the molecule is sero, it can be shown that only the difference of the angles, or the 
angle between the two planes, can enter the solution, and not either angle separately.   Thus 
there are really only five variables determining the wave function.   James and Coolidge now 
««* up a series of terms depending on th*:s» five variables, falling off exponentially as both 
electrons went far from the nuclei, so as to insure proper behavior of the wave function at 
infinity, and chosen eo that a comL.l««ti-_-n of these functions would be almost sure to be flexi- 
ble enough to represent the true ground state accurately.   As parameters, they used the co- 
efficients of these various functions, and they computed the energy *s a function of the param- 
eters, and varied the parameters so as to get a minimum value of energy. 

They carried out their procedure by starting with a rather small number of functions, 
minimising the energy, and then adding a term at a time, to see how much Improvement they 
got.   They continued the process up to something cf the order of fourteen ter-ss, at which 
i>oint the addition of further terms was making a negligible Improvement.   The net result of 

9S. C. Wang.  Physc Rev.  3j_,  579 (1928). 
,aH. M. James and A. 8. CooJ'idgt, J,  Ciiem. Phys,   »,  S3S (1933), »ad iater papers. 
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this was that their final energy differed from the observed energy of the molecule by a quan- 
tity cf the crder of magr-it«dft nt the aitpef imental uncertainty in thia energy.   la other words, 
they had done two things:   Ihey had produced a wave function which was a practically perfect 
solution of Schrodinger'a equation, in ths form of a sum of a number of analytic terms* «nd 
they had verified that the solution of Schrodlnger's equation agrees with experiment with great 
accuracy  in this case.   This latter point should not be overlooked, i•» evaluating the impor- 
tance of their result.   Aside from the hydrogen atom and a few soluble problems, the sue - 
cesses of Schxodinger's equation have been mostly qualitative, on account of the great diffi- 
culty of getting accurate numerical solutions.   Very few many-body problems hnve been 
carried through with very great accuracy.   One of these is the ground state of the helium 
atom: Hyileraas, '    ' some years before James and Coolidge, had used a very similar method 
for this problem, and had likewise found a result agreeing with experiment to practically 
spectroscoplc accuracy.   The hydrogen molecule is practically the only other case.   The very 
good agreement in both these cases has convinced everyone that the scurodinger equation 
really does agree with experiment for the many-body as well as the one-body problem, and 
Has encourages us to take the further steps to be described in these notes, approximating 
more and mere closely to problems of more complicated molecules and of solids, confident 
that the results will approach experimental values more and more closely, the further we 
carry our approximations.   This confidence is at the very foundation of our theory of mole- 
cules and solids, and it is based more than anything else on the careful calculations of Hyi- 
ieraas and of James and Coolidge which we have just quoted, together with the other aspect of 
the problem, the widespread qualitative agreement between experiment and the theories of 
multiplet structure and such things provided by our approximate methods. 
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11 B. Hylleraas. Z. Physlk48, 469(1928). ii 
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CHAPTER 3 
THE METHOD OF MOLECl/UAn ORB1TALS 

Following the woik on the hydrogen molecule which we have described in tne preceding 
chapter, there has been a very large amount of theoretical work on the structure of molecules 
of all sorts.   We shall present later a bibliography of the papers on this subject} it comes to 
many hundreds of papers.   It Is obvious that we cannot quote all this work, or give references 
to it as we proceed, and in our discussion we shall generally merely mention the principal 
workers in the field and the nature of their contribution?, leaving it to the reader to locate 
th»lr papers in the bibliography. 

The first thing to notice about this great literature is that it U rather sharply divided 
Into two main schools of thought.   One of these developed directly from the work of Heitler and 
London, trying to set up wave functions for complicated molecules by direct analogy with the 
Heitler-London function for hydrogen.   We shall discus* these methods in the n*xt chapter. 
They suffer front two greet drawbacks.   In the first place, they deal with non-orthogonal 
atomic orbitaxs. as the Heitler -London method does: in the second place, they must use a 
linear combination of determinants to get a representation of the ground state.   The second 
school of thought developed from the fact that the molecular orbital type of wave function, 
which we mentioned in the preceding chapter, Itself forms a fairly good approximation *o the 
ground state of molecules.   This method is more convenient than the Heitler-London method 
in that U deals with a function which is made up es a single determinant.- «"d the molecular 
orbital* which it uses are automatically orthogonal.   It is thus simple to use.   It has the com- 
pensating drawback that, as in hydrogen, it doss not reduce to the correct limiting values at 
infinite internuclear separation.   For this reason, work with the* molecular orbital method has 
generally been carried out only at the equilibrium Internuclear distance or close to it, and 
there it has shown itself capable of giving a great many valuable results.   On account ot its 
simplicity, we shall describe this molecular orbital method first, devoting the present chapter 
to it.   Then in the next chapter we shall consider methods which involve taking linear combina- 
tions of determinants.   This includes the extension of the Heitler-London method to compli- 
cated molecules, but tt sis? includes the general method of configuration interaction, similar 
to what we have described in Chspter 1 for atoms.   That method in its general form is more 
inclusive than the HeiUer-London procedure, sad represents the best method which we have 
for approximating to the solution of Schr^atoeer'a equation for molecules and solids. 

1.' The General Nature of the Molecular Orbital Method 

The molecular orbital method has grown up somewhat gradually, and it has* become 
clarified as it has developed.   Before we (race this historical development, we wish to know 
clearly what the method is.   in the present s-ettss, therefore, we shall state what we shall 
fticn by tha method.   Then wt aha'l go on .'o later section* to describe it* bi«to?7, *•< ts j:r.;c 
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THE METHOD OF MOLECULAR ORBITALS 

the various approximations which have beer, used to carry It through In practice. 
Brteily. the method la a straightforward application ox the method of the self-consist- 

ent field.   We assume tliat we solve a one-electron problem for the motion of an electron in 
the field of the nuclei, and the averaged charge distribution of all other electrons.   The re- 
sulting wave functions are called molecular orbitals.   Each will have its one-electron energy, 
as in the atomic case, and as in that case we can show by Koopmans' theorem that these oae- 
electron energies approximate the energy required to remove the corresponding electron from 
the molecule.   We then build up the ground state of the molecule by filling up these wave func- 
tions, starting with those of the lowest one-electron energies, with one electron each (for each 
spin), until we have accomodated all electrons.   We note that Koopmans1 theorem, by a slight 
extension, indicates that this should represent the state of lowest energy.   For we can argue, 
as we do in the study of x-ray term values, that the energy required to move an electron from 
oae energy level to another is approximately the difference of the one-electron energies of the 
two levels, so that certainly the energy of the whole system will decrease if we go from a 
state la which one inner level is unoccupied, to another in which sa electron has fallen from 
sa upper level into this previously unoccupied inner level.   In other words, we caa justify the 
elementary picture that all electrons want to fall Into the lowest pos»»4» energy levels, to get 
the ground state. 

la aa atom, la a similar way* we set up the configuration of the ground state by filling 
all oae-electron levels in order of increasing energy.   From each resulting assignment of el- 
ectrons to wave functions, we set up a single determinantal function.   With atoms, we have 
seen that oa account of orbital sad spia degeneracy, we very often have a number of such de- 
terminants whose diagonal energies are about the same, so ihat vj must treat the degeneracy 
problem between these determinants by solving a secular equation, resulting in a linear com- 
bination of the resulting determinants.   With molecules, on the contrary, in a gre&t majority 
of the cases we find that there are just enough electrons to All certain one-electron functions, 
sad that there is a considerable difference la ener^-v between this configuration, sad say other 
configuration formed by putting certain electrons in other orbitals.   Thus in the case of H?. 
we have found two orbitals, which we called u„ sad u , which are the two lowest orbitals la g u 
the problem from the standpoint of energy.   With our two electrons, we can put oae of each 
spin in the u   orbital, to represent the ground state.   If one Is removed from this orbital, the 
next higher state.cot&es if it is in the uu orbital, the remaining one being In u^ and our dis- 
cussion of Chapter 2 has shown that this corresponds to s considerably higher energy.   Thus 
• single determinant corresponding to the tno electron being in the u   orbital, one with each 
spin, represents by itself a good approximation to the ground state, and it Is this which we 
have described as the molecular orbital function, in Chapter 2. 

Similarly la a great majority of molecules we csa represent th* ground stste by s sin- 
gle detsrmln*".*.: sad the molecular orbital method is just that in which this single determinant 
is used as an approximate wave function for the molecide.   Having forxnvd the determlnanta! 
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i. THE GBNiiKAL MATURE OF THE MOLECULAR ORBITAL METHOD 
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wave function, we can then proceed to find a potential from it,  and to use this potential as the 
starting point of * further stage of the self-consistent method.    Since we are dealir.g with a 
single determinant, we hava a case to which the Hartree-Fock method is directly applicable. 
On the other hand,  if we are interested eventually in interactions with higher configurations, 
so that «e wish to find a set of orthogonal orbitals.  we will do better to use the extension of 
the Hartree-Fock method described in Eq. (1. 21), since this will give a single potential func- 
tion for all the orbltals.   In most of our descriptive discussion we shall assumed that this 
method of Eq. (1. 21} la used, though in some of the applications a method clo er to the Har- 
tree-Fock has been applied. 

It is not an accident that most molecular problems can be approximate A by a single de- 
terminant.   We recall the atomic cases where a similar approximation is good:  we have such 
f. case when the ground state is a   S stats,  and this results when the electrons form a closed 
shell, a* in the inert gas atoms.   Ever since the original suggestions of G. N. Lewis on the 
nature of valence,  ihc chemists have believed that there was a strong connection between the 
existence of stable molecules, and the formation of a closed shell of some sort by their outer 
electrons.   This is only a qualitative idea, which can be made more precise as we go further 
into the theoryt but it makes It seem very likely that the reason why many molecules have a 
ground state which can be approximated by a single determinant is the simple fact that it is 
these molecules which are stable, and which are ordinarily formed in nature.   There are of 
course some exceptions to this rule, but they are relatively unimportant.   And of course in 
the excited states of molecules, we no longer have this simplification, and must use combina- 
tions of determinantal functions.   The ground states, however, are particularly appropriate 
for the use of the molecular orbital method, on account of this fact that generally they can be 
well described by a single determinamal function. 

We have talked of this self-consistent calculation as If it were s simple and straight- 
forward thing, and in principle it is.   In prsctice, however, it is so hard that hardly any 
molecule has ever be«a carried through by ltt the only really **rious attempt to use it in de- 
tail has been (hat of Coulson' ' on H2, where by methods similar to those of James and 
Coolidge, he obtained molecular orbital* touch closer to self-consistency than the simple 
combinations sib which we have mentioned in Chapter 2, and got a corresponding lowering* 
of the energy of the molecular orbital state: though it still was about as far above th* correct 
energy of the ground state as the molecular orbital energy which we have discussed in Chapter 
2 was above the lowest energy calculated by the methods cf Chapter 2.   The reason for this 
difficulty is obvious:   we have to solve a one-electron problem of the motion of an electron in 
the field of many centers, and this problem, unlike the corresponding central-field problem 
for an atom, does not permit separation of variables, and is very hard tc solve accurately by 
any approximation methci.   Accordingly we mult look for the best methods we can find for 
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approximating to such a solution, and we ahall diacuss this further in the present chapter. 
Ever, if we have found an approximate wave function,  we stiJl have further difficulties ahead, 
for we roust find the diagonal matrix component of the whole energy,  in order to get the total 
energy of the molecule, and this involves integrals which may be wry iuud to evaluate.   As a 
matter of fact, moat of the work which has been done so fcr has contented itself with a calcu- 
lation of the one-electron energies, and has not carried through the whole calculation of the 
e-iergj- of tne molecule. 

2. The Historical Development of the Molecular Orbital Method 

With the sketch which has been given in the preceding section, we understand what the 
molecular orbital meihod is well enough so that we can now go back intelligently and consider 
its development.   The names of three physicists are connected with its origin, more perhaps 
than of any others;   Hand, Mulllken, and Lennard-Jones.    Mulllkea and Hund had been work- 
ing at the analysis of the electronic spectre of diatomic molecules, even before the beginning 
of wave mechanics in 1926.   We realise, of course, that each electronic energy level of a di- 
atomic molecule corresponds to s curve of energy as a function of internuclear distance. 
This curve represents the energy of the electronic system, including electronic kinetic en- 
ergy, electronic potential energy in the fields of the nuclei and of each other's repulsions, and 
tne ptowiaar repulsive energy, as s function of distance, when the nuclei are assuir**d to be 
held fixed.   Hund and MBlMi»*i were engaged in applying the ideas of the vector model and 
complex spectrum theory to the observed molecHles, et the time when wave mechanics was 
invented.   It was very natural* since the energy levels of the separated atoms could be ex- 
plained by the self-consistent field method* plan the Interactions between angular momentum 
vectors treated In coai?l*x spectrum theory, tc suppose that a similar method could be used 
for the combined molecule as well.   And In this way they began to think of a molecule as built 
up from one-electron wave functions which were solutions of the two-center problem, the low- 
est one-electron energy levels being filled far enough to accomodate all the electrons, and the 
upp*.- ones being empty, "though occupied in excited state.-?. 

The problem of the solutions of the two-center problem thus became of great impor- 
tance.   The first case of this aort that was accurately solved wss lha* of the hydrogen mole- 
cule-ion* whose solution by Burrau' ' has already been mentioned.   This exsct solution, 
howsrer* was less useful than ihs approximate solution made up as a linear combination of 
atomic orbital s, such as we have discussed in the preceding chapter) this way of approxlmat- 
lag to the two-center problem wes discussed, among others, by Pauling*'' and by Morae and 
81-ueckelberg.' * Then lit 19«* Lennard -Jones, in as Important paper. •    con»idar«d the 
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2. .THE HISTORICAL DEVELOPMENT CF THE MOLECULAR ORBITAL METHOD 

probable nature of the energy levels as a function of internuclear distance, in the problem of 
two attracting centers which represented successively the self-consistent fields for the mole- 
cule? Li2> Be2> B2> C,. N,. O,, and so on.   It was of course ton hard tc get exact or even 
approximate solutions for these two-center problems, but by piecing together various soris of 
information, Lennard-Joses was able to deduce the general form of the energy levels,  and to 
find which were the lowest,  and consequently which ones were occupied in the ground state of 
the molecule.   In this way he arrived «; ir«o» zaaiioo about the ground states, and was even 
able to explain why the molecule O, is paramagastic, having a triplet state as Its ground state. 

sV 

Thrse general principles were rapidly extended, by Hund, Mulliken. Hersberg, and 
ethers in the next few years, to give a good desrr'ption of the structure of the diatc^alc mole- 
cules, both homooolar (consisting of two like atoms) and heteropolar (having two different 
atoms).   It was a natural step to start on the polyatomic molecules, and Mulliken started in 
1932 writing papers about polyatomic molecules; for these, and the large literature of the 
subject, the reader is referred to the Mi>iio»» «j>5«y-   u one particularly important paper, * ' 
he discussed the symmetry of the electronic wave lunrMon, arising from the symmetry of the 
molecule.   Thus in a homopolar diatomic molecule,  •?< bars seen that the wave function must 
be symmetric or antisymmetric on reflection in the plans midway between the atoms.   This 
is merely the simplest example of a very general set of symmetry principles, which we shsll 
examine in a later section.   The general formulation of these symmetry principles is best 
given by the group theory: but In many important cases the results are simple enough so that 
they can be understood by inspection.   In any case, in a polyatomic molecule, wo no longer 
have the conservation of sngulsr momentum, and the consequent orbital angulur momentum 
and its related quantum numbers, to help us in our problem of classifying tt< orbit4 Is and 
helping in factoring the secular equation.   We do, however, have these symmetry properties, 
and they fulfill many of the same functions.   Thus s study of such symmetrical molecules as 
methane!, smmonla, and many others, really demanded the study of the symmetry, and the 
nature of Hm molecular orbitals and structure of these molecules advanced rapidly. 

Sb?- tlj 'oetcre the papers of «rhi=h •*» have juai epessn, Suck*!.       la a v*ry impor- 
tant t*t of pavers, laid the foundation for the theory of the benzene molecule.   Earlier he and 
others' ' had attacked the problem of the carbon double bond, and the application of this to 
the beneene problem wss obviously desirable.   Let us recsll for the non-chemical reader the 
particular problem of the beasene molecule.   We recsll that it is a regular hexagon or six 
carbon atoms, with a hydrogen projecting out from each carbon at an angle of 120° to the 
bonds Joints* it to its csrbor. ~**w»<»i»«.   Thua aach p«rb*>r» forms three obvious bonds, two 
with its neighboring carbons and one with the hydrogen; and yet the chemists Are in the habit 

6R. S. Mulliken.  Phys. Rev. 43. 279 (1933). 
7JB. Hncael, Z. PsyslkTO.  204 (1931k  72,   3i0 (1911):  76, 628(1933). 
s"., HacU!. J.. Phy»!*i©. «3 (1930). 
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of thinking that carbon should form four bond*.    Kekule suggested many years ago that this 
could be explained if there were double bom*,  say, between carbon atoms 1 and 2, between 
3 "and 4, and between 5 and 6,  if we number them in order around \he ring, but single bonds 
between 2 and 3, between 4 and S,  and between 6 and 1.   This would Involve us in ••» difficulty, 
however, for the inter nuclear distanc? is a double bond is known to be less than In a single 
bond, from many compounds where the bonding is unambiguous, and yet in the benzene mole- 
cule the distances are all the same.   This was commonly explained, in terms of single and 
double bonds, by bringing in the alternative structure in which the double bonds were between 
atoms 2 and 3.. 4 and 5, and 6 and 1, with single bonds between the others, and by assuming 
that somehow the actual structure was a compromise between these two possibilities. 

In Urai of the valence bond theory, which we shall describe in the next chapter, 
Pauling'9' explained this by assuming that each of the two possibilities represented an unper- 
turbed wave function, and that the true wave function was a linear combination of the twos in 
this particular case, since the two states were degenerate, it would be & sum zi the two, and 
oa account of ms^ng the linear combination, the energy of the resulting ground state would be 
decreased by the amount of the non-diagonal matrix component between the two states.   This 
process of combining the degenerate states was called resonance by Pauling. In analogy with 
Heleenberg'a original use of the term resonance in discussing the interaction of two identical 
systems. 'l0'  In this way Pauling's resonance theory of chemical binding grew up, as we shall 
describe more) la detail in the next chapter. 

Huckel, however, in the papers which ws have quoted, proceeded In quite s different 
way. by using the ideas of molecular orbltals.   Let us consider very briefly the symmetry 
properties of the molecular orbltals In s force field such ss ths. of the benzene molecule.   In 
the first place, the potential energy is symmetrical with respect to reflection In the plane of 
all the atoms.   One can thee deduce that all electronic wave functions must be either sym- 
metries! or ami symmetrical under such s reflection.   The electrons whose wsve functions are 
sy&uawii iv «i« called c- electrons, those with antisymmetric wave functions sre w-electrons. 
A study, which we shall reserve for later, shows that the a -electrons are responsible for the 
three ordinary bonds of which we have spoken, and there Is nothing remarkable about them. 

As for the v-electrons, each carbon atom by Itself would have an atomic p-electron 
orbital whose wave function would have a nodal plane In the plane of the benzene atoms.   The , 
•-electron molecular orbltals are built up out of these atomic orbital*, u we wish to use the 
approximation of making llnsar combinations of atomic orbltals, ss we did with H,.   Thus we 

Sk 

have six atomic p functions, which of course will combine Into six molecular orbltals.   We 
realise that the sis atoms in their ring are very much like a one-dimensional crystal of six 
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9L   Pauling. J.  Am. Chem. Soc. 53,  1367,  3225 (1931); 54.  988,  3570 (1932): Proc. Nat. 
Acad. Scl.  18, 293 (1932)i J. Chem. Phys.  I, 28v (1933); L. Pauling and G. W. Wheland. 
J. Cbera. Viyf-.  I.  *&S (193?-)j «.-. i later papers. 
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atoms, closed or. itself* and Huckel used the analogy of the crystalline problem which had been 
worked out shortly before by Bloch.'    'to deduce tbe nature of tho wave functions.   If we 
label the atomic orbltals a,, where j goes from 1 to 6. then the analogy with the metallic 
problem (which of course can equally well be directly deduced from group theory) tells us that 
the linear combinations of atomic orbltals he ring the correct symnstry to represser molecu- 
lar orbltals are 

I(J) .Uj •, . 

6 Ik where k is so chosen that the function is single-value*** that is, so that the coefficient e     , 
which we get by putting in j • e, is the same value that we should have had by putting in J = 0, 
which should equally well represent the sixth *».iom.   In other words, we must have •       » 1, 
or 6k • 2n«, where n is an Integer, or k • nw/3.   There are just six independent values of 
k. which we may take to be 0, w/3, 2 w/3. w, 4 w/3, 5»/3j the next value would be 2v, which 
yields nothing new.   We note, however, that e5wl'3 equals «'wi'/3, and e'4*1'3 equals e-2*1'73, 
so that we can equally well take k to have the values 0, t w/3, t 2 w/3, v. 

We have, then, six wave function, but obviously some degeneracy, for the two functions 
«rith k • i w/3 will obviously have the same energy, as will those with k • t 2w/3.   The for- 
mula for energy is set up as in-the metallic problem, as we shall show later when we come to 
a more detailed discussion of this case.   W« find that k • 0 corresponds to the lowest one- 
electron energy) this corresponds to the bottom of an energy band in a solid.   The two states 
with k • t w/3 come next, then those with k • ± 2w/3. and finally that with k - w, in which 
the successive coefficients e   *' are t 1, so that the wave function alternates in sign from one 
atom to the next, is the highest, and corresponds to the top of the energy band with a solid. 

We next ask h >» many electrons we have in this energy band.   Each carbon atom has 
two Is electrons, two 2*, and two 2p, in the free state.   When we come to examine the prob- 
lem of the molecular orbltals more in det&U, we shall find that all but one of these can be ac- 
comodated *a the 9-type molecular orbltals, which we are not considering at the moment. 
This leaves us with one electron per atom for tbe w-electron orbltals, o: aix in all.   Obviously 
we should expect that these would fill tbe three lowest states, with k - 0, ± w/3. with two el- 
ectrons each, one of each spin.   This describes the structure which Huckel pos+'ilsted for the 
benzene molecule, and one sees that, since each of these orbltals treats esch «' the six carbon 
atoms in an exactly equivalent way,  we get away entirely from the difficulty of having to de- 
scribe the molecule as having alternating single and double bonds.   Essentially this type of 
description seems like certainly the correct way to look at this problem. 

The pspers of Hiicke:. had a great effect in turning the direction of the workers in the 
field towaid what are called unsaturated hydrocarbons.   These are substances in which there 
are enough electrons to form a certain number of double bends, but not as many as we could 

UF. Bloch,  Z. Physik 52,  555 (1928). 
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Imagine geometrically (as benEene may be considered *c have three double bonds among the 
OIA bonds connecting carbon atoms).   There are many chain compounds having this nrr>p*i«ty. 
and in some cases some of the bonds, as judged by the internuclear distance, are close to 
double besds,  whlie ethers are rloee to single bonds, the internuclear distances showing an 
alternation.   In other cases this alternation is not present.   Compounds showing this cert of 
behavior are called conjugated compounds by the chemists.   In a chain compound of this sort, 
we again have an analogy to a one-dimensional crystal, only now it is terminated at the ends. 
so that the boundary conditions are different from the cyclic boundary conditions in the ring 
compounds.   Lennard-Jones'    ' and his students, following this Ides, showed that it was pos- 
sible to get solutions for the energy levels of the molecular orbltals in such problems* and 
derived many results from the method, in agreement with experiment: the solution of the 
seculsr equations for the molecular orbltals actually yielded the sort of alternation observed. 
Work along the same lines has proceeded rather continuously since these early papers.   Mul- 
liken*    ' and his coworkers have written considerably on itj and since the War it has been 
•eker. up agate by many workers. *    ' 

Another line of research inspired by tV work of Huckel concerns the excited energy 
levels of bensene and of the aromatic or ring comport.   In an important paper, Qoeppert- 
Mayer and Skier*    ' applied molecular orbital methods to s calculation of excited energy lev»'« 
of bensene.   They used the »*»».»re! formulation of Huckel, but they went far beyond him in the 
general technique of handling the problem.   Huckel had computed the one-electron energy of 
an electron in the field of sis-fold symmetry representing the bensene molecule, and had got 
the energy levels in terms of certain exchange or resonance integrals, which he did not try to 
compute from first principles.   He, and many succeeding users of the moi*rul**> orbital 
method, merely used these one •electron energies to represent the energy levels of the mole- 
cule, calling essentially on Koopmans' theorem to justify this (though not always recognising 
this theorem by name).   Ooeppert-Mayer and Sklar. however, proceeded in a more funda- 
mental way, s*«inj up a determinw.til function constructed out of the molecular orbltals, and 
setting shout to compete the energy of the a. ny-electron problem by averaging the Hamiltonian 
over this wave function.   They could not carry this very far. for certain three-center Integrals 
(which we shall later examine more in detail) were too difficult to compute properly.   But they 
set a pattern for many later calculations, in which such detennlaantal many-electron functions 
are set up. 

One rather remarkable line of work has resulted fret, this study of excited energy 

J. E. Lennard-Jones, Proc. Roy. Soc. (London) A 13s, 280 (1937) and later papers. 
138ee for Instance R. S. MuUiken and C. A. Rleke. J. Am. Cham. Soc. 63, 1770 (1941). 
14See for instance C. A. Coulson and H. C. Longuat-Hlggins. Proc. Roy. Soc. (London) A191. 

39(194?). »nd many later papers. 
:'*i\ Gceppert-Mayer and A. L. SJQar. J. Chem. Phy.. 6, 64* (i*38) 
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levels of aromatic compounds:   an extensive set of paper* on the colors of orcanlc dyestuixs. 
This work more or lets started w 1th further papers by Sklar and Herzfeld'    ' following latr-.ly 
directly from the work on benzene.   It has developed,  however, along a rather different Hne. 
T':c reader famUiar with the theory of metals will realise that the Bioch theory of energy 
t-nd; cft«u cas Lc wsll *pp«-cximated by the simpler Sommerfeld theorv of free electron*.   It 
occurred to a number of workers In *he field that in a similar way the distribution of »?»ergy 
levels in the aromatic and unsaturated compovutds might be approxl .nated by thinking of the 
molecules as ore-dimensional regions in which free electrons of a Sommerfsld type were tree 
to move, with merely the quantum condition that there be a whole number of half wavelengths 
of the de Broglie waves la the length of the chain, or a whole number of wave lengths around 
a closed ring In a cyclic compound.   We realise, of course, that there is a close resemblance 
bet-reea the two points of view in the study of metala, where the Bloch theory gives m distribu- 
tion of energy levels much like what we should find with the Sommerfeld theory but with an ef- 
fective mass rather than the true electronic mass, provided we are Interested only in the dis- 
tribution of levels at the bottom of the energy band.   With this point of view, an extensive set 
of papers has grown up, relating to the behavior of the conjugated molecules, the absorption 
of light by dyestuffs, and so on, in which the workers in the field appear to find extensive 
agreement with experiment.   The theories in this particular part of the subject may well be 
oversimplifies*: ssd y*rt ose gets the impression that this type of approximation ought to be 
rather food, and that it may well be that much of the work along these lines may prove on 
closer examination to be a good first approximation." ' 

Prom the survey which we have given, it is clear that the method of molecular orbltala 
has found widespread application ii» cuemicai problems.   Most of the work before the War was 
only semi-qualitative is character.   Since the War, however, there ban been a great burst of 
activity in the field, including much work of a quantitative degree of accuracy not attempted 
before.   In this country, MuUlkeoV0' a&d his eoworkara u*ve initiated a program of numerical 
calculation of molecular orbltala, by a modification of the self-consistent field method using 
linear combinations of atomic orbltals, often abbreviated LCAO.   They set up such linear 
combinations of atomic orbltals (like our combinations »  t b for the hydrogen problem) having 
the proper symmetry to represent molecular orbitals, and in most cases have enough atomic { 
ovuiiale ao that the coefficients of the LCAO's cannot be predicted uniquely from symmetry 
considerations alone, as they could in the hydrogen case.   They then set up a determinant*' i ; 

1 Various papers by A. L. Sklar and K. F. Hersfeld.  1937-1942. 
See papers by O. Schmidt, 1938-1940; R. DaudeL P. Daudel, A. Pullman, and B. Pullman 
1945 to the present.. 

1-See for tnaunce R. S. Mulliken, J. Chem. Phye. 46, 497, 675 (1949k C. C. J. Roothaan. 
Revs. Modern Phys. 23, 69 (1951k R. O. Parr ancTB. L. Crawford, Jr., J. Chom. Phys. 
16. 526,  1049 (19«.3),C C. J. Roothaan and R. 3. Mulliken, J. Chem. Phys.  16.  116 
TT948)i J. E. %Su!Hgan, J. Chem. Phy«.  »9,  347 {!?-»>> and numerous ..>»her papers. 
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wave function for the ground atate of the molecule, made up out of limss molecular orbital* 
expressed in term* of atom!" orbitals.   These determlnantal v*ve functions of course involve 
the i oeffintents involved in the LCAO's, as yet undetermined.   They compute the energy of 
the molecule from this determinants! wave function, and then vary the undetermined coeffi- 
cients to make this energy a minimum.   Is this way they determine the final coefficients re- 
quired to represent the molecular orbitals in terms of atomic orbit pis. and from this can 
easily get tne ooe-eiectron energies corresponding to the molecular orbitals.   We see that if 
they had complete flexibility in the functions which ;«*>- «•?« varying, their procedure would 
be precisely that leading to the Hartree-Fock methoa.   Since their l<CAO's are not completely 
flexible functions, the results cannct be as good as those of a Hartrte-Fock calculation* but 
nevertheless they represent a conscientious attempt to take the first really quantitative step 
toward a self-consistent treatment of molecules, and their results have shown very gratifying 
agreement with experiment. 

In England as well the method of molecular orbitals ts being developed at a very rapid 
rate at the present time.   Extensive groups of papers in the last flvo years by Letmard-Jcnes. 
Coulson, Pople, Hall. Longuet-Hifgias, Dewar, and a number of others have contributed 
greatly to oar understanding of the method, and of its application to chemical problems.   The 
literature is becoming so extensive that the reader <« referred to the bibliography for the de- 
tailed references.   More and more it is becoming dear that the method of molecular orbitals 

•represents an approach to chemical problems which is more satisfactory than any other, and 
that as It becomes more and more quantitative, it can be hoped to lay s really exset founda- 
tion for chemical theory    We must remember one reservation, however.   From the preced- 
ing chapter, we remember that the method o» molecular orbitals does not lead to correct be- 
havior at infinite Internuclear distances, unless we take into account the configuration inter- 
action with higher configuration thus in the H2 molecule we have to take into account not 
only the molecular orbital ground state, in which, both electrons are in the symmetric orbital 
a • b, but also Its configuration Interaction with '.ne excited state in which both electrons are 
in the antisymmetric orbital a - b, in order to ^et a correct description of the molecule at 
infinite separation.   Such configuration interaction has not been taken Lr.to account in most of 
the work done by the molecular orbital method.   It is probably not a very serious source of 
error, but nevertheless it must w am us that the method, as usually used, is only partially 
eorrsct.   Some beginnings in the direction of configuration interaction have been made, for 
instance, by Cralg.'    ' But they will have to be carried much further before we really have 
a satisfactory theory of molecular structure.   In the next chapter, we shall take up la detail 
these quaatisrs of configuration interaction, and* of the efforts to understand them being made 
in the Solid-State and Molecular Theory Group at M. I- T., where they form the main topic of 

i9D   F. Cr&ig.  »>roc. Roy. Soc. (London) A200, 474 (1950), and other papers. 
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3.  DIATOMIC AND LINEAR TRIATOMIC MOLECULES 

interest. 

3. Diatomic and Linear TrUtomlc Molecules 

We have now followed the history of the development of the molecular orbital theory 
fax enough so that we are ready to go into more details regarding it.   Our main problem is 
that of finding the one-electron orbitals:   giver, m potential function representing the potential 
of all nuclei, and all electrons but one, acting on the remaining electron in a molecule, how 
do we solve a one-electron Schrodlnger equation for that electron?   We cannot separate vari- 
ables as with the atomic problem,  solving the angular parts of the Schrodlnger equation ex- 
actly by means of spherical harmonics, and being left oal> with a function of r to be deter- 
mined by numerical integration.   Nevertheless, the symmetry properties, which are the 
nearest analogue to the spherical symmetry of the single atom which we have left with a 
molecule, can often be a great help in the solution of the Schrodlnger equation, and in this 
Section we shall consider those symmetry properties, as well as considering the problem of 
setting op wave functions of the proper symmetry.   The symmetry properties can be most 
systematically handled by means of the group theory.   Nevertheless most of the simpler casea 
can also be treated by elementary means, and we shall follow that method i*er«, believing that 
after the reader has handled the problems by elementary methods, he will be able to under- 
stand the group theory treatment*, such as that already quoted by Mulliken. more thoroughly, 
and will be lose likely to make mistakes In its use.   In our treatment, we shall use the method 
of handling a number of typical special casea, rather than of trying to build up a general 
theory. 

First we consider diatomic molecules; they are the simplest, and were for a number 
of years the only case simple enough to treat, and they were the problem for which the method 
of molecular orbitals was really devised in the first place.   Here, since vhe potential is un- 
changed if we rotate around the axis of the molecule, we can still carry out a separation of 
variables, though not aa complete as with the spherically symmetrical problem.   w» c»n 
write the wave function as a product of a function of the angle of rotation about the axis, and 
a junction of the two coordinates in a plane passing through the axla, and find at once that the 
function of the angle is a simple exponential, e     *   If • is the angle, or coa me or sin m+. 
where m la an integer.   By analogy with the atomic case; we denote an orbital with m • 0 
as & c state, one with m • t 1 as a « stale, m » i ?. a t state, t 3 a • atate, and so on (o\ 
v,   6. + being the Oreek equivalents of s, p. d, f).   The two v states with t 1 for m can be 
denoted w+ and w_, to distinguish them.   If we are building up our molecular orbitals as linear 
combinations of atomic orbitals, it Is obvious that we must use aiwnlc orbitals with the same 
value of m ak the corresponding molecular orbital.   Thus in the caae of hydrogt.n, as treated 
in the preceding chapter, we buili <ipao- molecular orbital out of atomic la orbitals.   We 
could equally well have built up orbital* of the same aymmctry cut cf itrrr.ir ?s orbitals.   But 
we could also ha'« u*o« atcmic ?.p orbitals corresponding to m > 0.   According to a commonly 

•81- 



THE METHOD OF MOLECULAR ORBITALS 

accepted .notation for molecular orbitals, a or orbital formed from atomic 2a functions would 
be called Z%tr, and one from 2p orbitals a 2po-.    On the other hand, we could build w orbitals 
out of the 2p atomic orbitals having m - t I,  and in that case we should call them 2p« or- 
bititis.    ^irt*»»*if»n of this notation to high»r states is obvious. 

In a homopolar molecule, one composed of two like atoms, there is a further require- 
ment that the ware function be either symmetric or antisymmetric if we reflect in the mid- 
point of the line joining the atoms.   A wave function which la even la denoted by the subscript 
g (for gerade). one which Is odd by a subscript u (for ungerade).   It is worthwhile asking at 
this point why we must have this symmetry or antisymmetry} we accepted it without question 
in the preceding chapter, but it is the simplest example of a type of symmetry which we shall 
find in many other cases, and we should understand its origin.   Suppose we have a wave func- 
tion which is neither symmetric nor antisymmetric with respect to reflection in the midpoint. 
On account of the symmetry of the potential function, the wave function which we get from the 
original function by reflection must also be an elgenfunction of the problem.   Let the original 
function be U|, the reflected function u>.   Ai*o by symmetry the eigenvalue corresponding to 
u2 must equal that for u..   Hence we haves degenerate problem, and any linear combinations 
of u. sad u» may be used aa eigsnfunctions as well as u. and u2 themselves.   Let us then 
build up the combinations Uj t a..   The first of these functions i* symmetric, the second 
antisymmetric.   Thus we have shown that if we start with » vrsvc function which is neither 
symmetric nor antisymmetric, we must have two degenerate level* from which we can form 
a symmetric and an antisymmetric combination.   It is then a seu-contrciiiioi y assumption 
tv *«;••»»«• that w« ro.ii.d h-rs a a. • J-»^enerate stats which was neither symmetric nor anti- 
symmetric.   Hence if we hsve a non-«lege-.«rate state, it must necessarily be either sym- 
metric or antisymmetries while if we hsve s degenerate state, we can make symmetric and 
antisymmetric functions from the two degenerate state*,   in either case, the final functions 
are symmetric or antisymmetric. 

It is now dear, with a homopolar molecule, that from each atomic function on a sin- 
gle atom, we can build up a symmetric, and an anttaymmetrlc, «rnnbuwtion. ium as in ihe 
preceding chapter we built up the combinations sib.   We may tiwu build up a oet of func- 
tions resembling molecular orbitals, in that each one depends on angle through the factor 
•    * and is either symmetric or antisymmetric under- * reflection in the midpoint, by linear 
combinations of atomic orbitals.   TL>se functions of course will not be real molecular or- 
bitala, for those are defined as real solutions of the self-consistent field problem.   Never- 
theless for qualitative work we may use them ss molecular orbitals, aa we did in the preced- 
ing chapter.    If we wish more accurate approximations to molecular orbital*, we may make 
linear combinations of a number of these approximate functions.   To make the beat combina- 
tions, of course we compute the average energy of the combination, using the otM-electron 
Hamlltonisn derived from the self-consistent field problem, and vary the coefficients of the 
"linear combination to make the energy stationary.   Aa we know, this is equivalent to solving 
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a secular equation beiween the various unperturbed functions, and for this sc-tuler equation 
we muat compute the matrix components of energy between the unperturbed wuve functions. 
We now find very easily that there will be no non-d<*§on«! matrix components o! enc-i gy be- 
tween two functions with different m value* or between an even and an odd function.   Thus 
the secular equation factors, rod we have separate problems fur each  m vatae, -sd for each 
symmetry.   We thus see the advantage in picking out combinations of atomic orbital* having 
the proper symmetry behavior.   The combinations of atomic orbttais havUn: this proper sym- 
metry are often called symmetry orbital*.   In a later section we shall go much further into 
the details of the method of getting the best linear combinations of these symmetry orbttais 
to approximate the real molecular orbttais.   We note that with a heteropolar molecule, con- 
sisting of t~o unlike atoms, we no longer have the symmetry property of the orbitals, so that 
our secular equation does not factor as completely as for the bomopolar molecul* 

Let us now consider a few specific r»olocuies.   We know surprisingly little about the 
exact details of the molecular orbitals for the diatomic molecules; in the lest few years, 
when we have had the mathematical techniques for computing molecular orbitals fairly ac- 
curately, the interest has shifted to more complicated molecules, and for the simpler ones 
we cUU must use the rather early speculations made in the first days of molecular orbital 
theory.   For H,. ss we have seen in Chapter 2, the lowest molecular orbital Is the on* w*i»h 
we might denote by lso* . and the ground state of the molecule is that in which this orbital is 
occupied by two electrons (provided we disregard the configuration Interaction with the state 
in which both electrons are in the state lso~u, as we are doing in this chapter).   In the two 
helium atoms which would form a He2 molecule if there were binding between them, two elec- 
trons are in the iscr, two In lso*u, the total energy of the resulting combination being 
greater than for two separated atoms, so that there is no molecule formation.   In Li2, pre- 
sumably the next molecular orbital energy level above the lsov and lsov is the one which we 
could denote ss Zsc . and this is occupied by the two outer electrons of the molecule, givuur 
a binding not unlike that in H2-   In Be,, presumably the antisymmetric function 2s*   lies 
above the symmetric function 2ps*_, and the l*tUr* p<-«auu*«uly is occupied by the outer two 
electrons, the former being empty.   If Instead we had the 2s©~   occupied by two electrons, we 
could reasonably expect a repulsion, as between two helium atoms. 

Let us next pass to N2, 02, and F2, whose band spectre are well known, so that the 
order of their molecular orbital energies can be deduced with fair certainty.   In these mole- 
cules, it seems likely that the order of energy levels, going from the most tightly bound, is 

approximately ^ao*-. *••*„• *»°V ***r.j *P°V *P»+U« 2»»*i— 2poV   to N2' wlth itu 'our* 
teen electrons, the lower seven of these orbitals are filled with two electrons eacht that is, 
they are filled through 2p»+   .   This gives •**-£_ statei each orbital is filled with two elec- 
trons, one of each spin, lending to the singlet; there are equal numbers of orbitals with posi- 
tive am! negative components of orbital angular momentum around the axis, so that it Is a 
T. stats; and the number of u orbitals is even, so that whsc we reflect in the midpoint, the i 
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whole wave function does sot change sign   and we have a g state.    In 0?, the nert two elec- 
tron* go into the 2pw.    states.   There are two of these staUa, however, eo the* there are 
six possible configurations:   two In which both electrons, one of each spin, are either in ?,pwto 

or 2p    , and four In which one electron is In one orbital, one In the other.   The first poa- 
• 1 ftibllitias will lead to    a  state", the total orbital angular momentum being two units, where- 

as the last four, in the familiar w ay. will lead to a singlet and a triplet. In this case   £ and 
£.   As In an atom, the   T will He below the   £ , and It proves to be the lowest state In the 

moleculet giving one o» the few molecules with a triplet for a ground state, and explaining the 
paramagnetic nature of oxygen, ax ising on account of the magnetic moment associated with 
the spin.   Careful consideration of the symmetry of the electronic wave function In tula   £ 
state shows that It la   V . as we should expect.   In F2, the 2pw.    states are filled, leaving 
only the 2p?u states unoccupied, and leading again to a   £ state.   Finally with two Ne atoms 
all these states are filled, and we have repulsion as with two heliums. 

This gives us a jood idea of the behavior 01 the molecular orbital a In homopolar di- 
atomic molecules.   In heteropolar molecules., we do not have the simplification introduced by 
the symmetry.   Let us suppose that the two atoms are quite different in properties.   Then 
the energy levels of the Inner electrons in the two atoms will be quite different from each 
other.   When we set up the two-center problem, there will still be wave functions and energy 
levels for these inner electrons, practically aa lit the isolated stems.   The wave function 
corresponding, say, to the la electron, in the first atom will be very small In the neighbor- 
he*«d of the second atom, and vice versa.   For the outer electrons, on ine contrary, it may 
well be that the real wave functions will extend from one atom to the other.   As a very sim- 
ple example, suppose we were dealing with a molecule NaK.   In Na2. there would be a <r 
orbital formed from the 3s electron* on both Na atomn; these could combine to form sym- 
metric and antlaymoetric orbltsls.   We should certainly expect that in NaK there would be 
rather similar orbltsls, but formed from the 3s electron of Na and the 4s of K.   This sug- 
gests that In many cases it may happen that one atomic energy level of one atom, and another 
level of the other, may have approximately the same energy.   Then the corresponding wave 
functions will become peViurbed when the atoms form into molecules, and the resulting mo- 
lecular orbltsls will be combinations of the atomic wave functions of the two atoms, often 
with quite complicated properties.   We shall give an example of tins situation shortly, ir. the 
case of a tristomlc molecule. 

There is one property of the molecular orbltala in the heteropolar molecules which la 
quite different from what we find with the l.cs-opolsr ones, and which has important conse- 
quences.   On account of the lack of symmetry, each orbital will generally correspond to hav- 
ing different amounts of charge on the two atoms.   In a symmetric or antisymmetric wave 
function, such as we have with the symmetric molecule, we necessarily have equal charges 
»;; each, but we hava just s-^-n that in the extreme case of an inner electron In a heteropolar 
molecule, the charge can be entirely concentrated In oue atcr, and we can have all inter- 

! 
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2°J.  P.   IS-illi^i,  J. Cfwm. rr^m. ^9.  347 (1951). 
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mediate c«ses between this situation and thai of symmetrical charge dlatrlbution.   Then when 
w«» build up a determinantal wave function out of these orbital",  adding the charge distribu- 
tion* in tht> varlou* orbitsls, we are by no means bound to come out with just enough elec - ; 
tronic charge on each atom to balance its nuclear charge*   According to our rules, we fill the 
lower orbitaie with electrona, going far enough up to accomodate all electrons, and we may 
wall leave the atoms with some degree of ionizatlon, though of course the total .-iharga on the 
molecule as a whole will balance.   This amount of ionizatlon, plus on one atom and minus on 
the other, obviously does nut have to be any integral multiple of an electronic charge, and the 
net dlpole moment of the molecule which arises from it can here any value.   There has baen 
a certain amount of study of the dlpole moments of diatomic molecules from this point of 
viewi in general, the amount of ionizatlon found on each atom is small, much smaller than 
naive Ideas of the formation of the molecule from ions would suggest.   There is room for 
much further study along the same lines. 

Diatomic molecules are not the only ones having the type of symmetry of which we 
have been speaking in this section.   It is obvious that any linear molecule will have the same 
quantisation of the component of angular momentum along the axis, with the same a, *,  6, 
and so on characterising its molecular orbitals.   And any linear molecule with a center of 
symmetry will have the properties of having symmetric and antisymmetric orbitals.   There 
are a number of important molecules falling Into this class.   For instance, among inorganic 
compounds, an Important one is CO,, *./blch is a linear molecule with the arrangement OCOt 
among organic compounds there is acetylene C2H2, again a linear compound with the ar- 
rangement HCCH.   Both of these compounds obviously are symmetrical about their midpoints, 
so that their orbitals are all either ayaznittric or antisymmetric with respect to Inversion In 
this midpoint.   A very thorough calculation of the molecular orbitals In COz baa recently 
been made by Mulligan. " ' and *• shall discuss his results In moderate detaiV   This ex- 
ample will give us a chance to become somewhat acquainted with the LCAO, or linear com- 
bination of atomic orbital, method, which of course we have already discussed for YLV but 
which 'underlies icoet of the recent work on molecular oroitais, and which we shall discuss 
more completely In a later section. 

A carbon or oxygen atom has electrons In Is, 2s.  and 2p orbitals.   On account of the 
threefold degeneracy of the 2p orbitals in an atom, there are five such orbitals for each atom. 
Out of these five atomic functions in the three atoms, we can construct fifteen linear combina- 
tions, whlc*i can represent approximations to the molecular orbitals.   We could, if we chose, 
determine the fifteen molecular orbitals in the following fashion.   We could set up the matrix 
components of a one-electron Hamiltonian operator between these functions, the operator    • 
consisting of the kinetic energy, and the potential energy In the self-consistent field of nu- 
clei and all other electrons, determined for Instance by the methods taken up In Chapter 1. 
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We could then solve the resulting secular equation !%n- the fifteen oaa -electron energies or 
eigenvalues of the problem, and for the eigenvectors or coefficients of the linear transforms - 
tlons expressing the correct wave functions as linear combinations of the original unperturbed 
functions.   Thus we should find the molecular orbitals.   The method used by Mulligan was 
slightly different, forming a direct analogy to the Hartree-Foek method, but the results will 
be very approximately the same by either scheme.   We shall take up the relations between 
these two methods in s lster section.   For the moment let us merely consider Mulligan's re- 
sults. 

In the first place, we can simplify the problem greatly by introducing at the outset 
combinations of atomic orbitals having proper symmetry.   The one-electron Hamiltonian will 
have no matrix components between two wave functions with different components of angular 
momentum along the exist and it will have no matrix components between two functions one of 
which is symmetric and the other antisymmetric with respect to taversic?. In the midpoint. 
Ii Is then very convenient to introduce linear combinations of the atomic orbitals, each char- 
acterised by a definite value of component of angular momentum along the axis, and each of 
which is symmetric or antisymmetric.   Such a combination of atomic orbitals i« often called 
a symmetry orbital.   The secular equation will then automatically be factored, and will break 
down into a number of separate secular equations, one fcr each type of symmetry.   Let us 
analyse this problem of C02 in detail, to see how many functions of sach symmetry we shall 
have- 

Each of the three atoms has three orbitals with sero component of angular momentum 
along the exist the Is, 2s, and 2po*.   Thus out of the nine functions of this type, we can con- 
struct nine a orbitals of the molecule.   Each atom has one orbital with • 1 component of 
angular momentum, and each has one with - 1 component.   Thus there will be three *^ or- 
bitals, and three v_'s.   Within each type, we shall have orbitals symmetric and antisym- 
metric with respect to inversion, or ef g and u type.   Let us s«e how many of these we have. 
To do this, let us construct the symmetry orbitals.   It is convenient to have some notation for 
toe atomic orbitals, and ws may as well use Uw uwUituu •uiiwwjvJ by mulii£=r„   He refers io 
the Is orbitals ea the two oxygen atoms as o and o't to the two 2s's on the oxygens as s and 
s'i to the Is on the carbon as c, and to the 2s on the carbon as sfi.   For the pff's on the oxy- 
gens, he used the notation s and s', ->n£ for the po* on the carbon, the notation s..   The res- 
son for this notation for the pa's is the following.   Ws take the s axis to be along the axis of 
the molecule, the oxygen atom with unprlmed orbitals being found at negative s, the carbon 
atom at the origin, and the oxygen atom with primed orbitals at positive s.   The 2pcr orbital 
then is wrltteu ii* spherical coordinates as having a factor r cos t, where • is the angle in 
polar coordinates.   That is, for the carbon atom, this orbital has a factor s, with a nodal 
plane at s • 0, and positive values of the function for positive s, negative for negative.   In a 
similar way the corresponding orbitals of the oxygens have nodal planes perpendicular to the 
* -ixe. and passing through their nucx»!- eod in each case the atomic function is positive on 
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the side of the nodal plane pointing tslon* the direction of * z. 
We can now see eaily that from our nine atomic <r orbltals,  we can construct five 

symmetric or g functions, four antisymmetric or u functions.    We may take the g sym- 
metry ortitsis as o • o\  s + s', c, s^, and %  - *'.   All of these are obvious except per- 
haps the last.    The reason why we need the minus sign with the functions z And z' Is that z Is 
positive on the positive side of the nodal plane through the oxygen nucleus;  that Is, it is posi- 
tive toward the carbon atom, negative away from It.    For a g function, we must combine the 
corresponding function on the other oxygen which is positive toward the oxygen, but this func- 
tion is negative-toward increasing z's, and hence is - z'.   In an analagous way, the u sym- 
metry orbital? are o - o\  s - s\ z • s', and z .   Thus in our secular equation for the mo- 
lecular orbltals, we shall have a *lf*» degree equation for the states of <r„ symmetry, and a 
fourth degree equation for those of a   symmetry.    Mulligan simplifies by assuming,  as is 
undoubtedly legitimate, that the Is orbltals will not appreciably be mixed in with the 2s and 
2p in making up the molecular orbltals.   That Is, he assumes that two of the a  molecular 
orbltals are identical with the symmetry orbltals o + o' and c, and that one of the tr   molecu- 
lar orbltals is identical with o - o'.   He then solves a cuMc equation for the three linear 
combinations of s + s',  s_.  and -      s' representing the three remaining orbltals of <r   type, 
and another cubic equation for the three linear combinations of s  - s\ z + z', and x   to form 
the three remaining o    urbiisls. 

The final linear combinations which Mulligan obtains, at the equilibrium distance of 
separation, are given In Table VII.   As we see, he uses the notation \<r . 2o~ , etc., for the 

Table VU 
la    -   0.48(s + *•) • 0. 32sc • 0. 21(s - x«),        l«ru * 0. 38(s - s«) + 0. ll(z • z') - 0. 51zc 

2<r    =-0u 51(s • s') •  0.40sc • 0. 46(s - «•), 2o"u •  0. 64<S - s') • 0. 37(z • z')  - 0. 65zc 

Kra -    0.55(s* s')  -  1.32s,, • 0. 64(z - z«), 3o*    - 0. 85(s - s') • 0. 84{z • z') •  1.53«„ g c u c 

various resulting functions, the energies increasing as we go from Icr   to Z<r , etc.   From 
the values In the table,  it is clear that we cannot Identify any one of these orbltals with any 
one of the atoms; the corresponding atomic level* in the carbon and oxygen atoms are so 
nearly the same that we have combinations which are large on both.   It Is rather hard to In- 
terpret these functions without seeing them actually computed and plotted, and l.t Fig. « we 
give such a plot, though Mulligan does not give it.   The thing which has been plotted is the 
value of the wave function at points along the line passing through the nuclei, computed from 
the formulas for the various atomic orbltals given in Mulligan's paper.   To understand the 
figure, we mast first remember the general form of the atomic orbltals.   We remember that 
an sfS2lic 2s function, like a,  a\ and s„ above,  is finite at the nucleus. v«iry rapidly de- 
creases, goes through a node and changes sign,  and has an out«r part of considerable extent, 
of opposite sign to the value at the nucleus.   Tve wave function actually Is no. as i«-ge in this 
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Wave functions for states ia„ — 3<ru of CO,, along 
lnternuclear axis,' following Mulligan. 

outer region as it Is near the nucleus; but the volume of space near the nucleus Is so small 
iha* only a small fraction of the charge Is located near the nucleus,   most of It betn* In the 
outer part of the wave function.   Thus K Fig. 4 we clearly see The high peaks In the wave 
function near each nucleus, but we must remember that these are unimportant in considering 
the general behavior of the charge distribution. 

To help the reader fix his attention on the important features of the wave function, we 
have drawn dotted lines in Fig. 4, showing the general trend of '.he wave functions If we dis- 
regard these peaks near the nucleus.   Once w«; icofe. st •.hose dotted curv**,  *o see what is 
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going on:   as *e go from la   to la,  2a ,  2a ,  and so on.  we have a succession of curves 
each having one node more than the preceding one,  and looking much like th» iuirr*«sive wave 
functions of a one-dimensional linear oscillator,  or like the successive sine curves repre- 
senting the states of a one-dimensional particle in a box.    The true nature of the wave func- 
tions,  as we see in this way, is much like that of electrons freely wandering through the whole 
molecule.    If we set up a cylindrical region about the size of the molecule,  with a constant po- 
tential inside it,  and a potential which rapidly rose outside the box,  we should have wave 
functions for an electron in this cavity which would vary along the lengtli of the cavity much 
like those which we have found,  and which would fall off as we went out from the center of th<* 
cavity in a radial dir  -jtion.    Of course,  in higher quantum numbers the wave function would 
also have nodes as we went* out along the radius, but these would correspond to higher excita- 
tions than we are considering here.   This sort of situation. In which the molecular orbltals 
have resemblance to the w.vc functions of a free electron in a cavity of the same sice as the 
molecule, Is of very widespread occurrence.   Of course, the real wave function, as we see 
from Fig. 4, Is modified near each nucleus, but this does not affect Its general behavior. 

There Is an obvious resemblance between these wave functions and the sort found In a 
crystalline solid.   We ars familial with the procedure of Bloch, *    ' who superposed atomic 
orbital* to get one-electron functions in a crystal, showing that the resulting wave functions 

l'*Z\ are similar to sinusoidal waves as found for a free electron.   The present writer*" ' has 
drawn curves for the wave functions of conduction electrons In metallic sodium, drawing dot- 
ted lines through the wave functions in just such a way as we have done In Fig. 4,  and the 
similarity of those curves to these computed for CO, is quite striking.   It Is this similarity 
which makes it reasonable to approximate the behavior of electrons in aromatic and other 
compounds by replacing them by free electrons in a potential trough, as we discussed In the 
preceding section. 

We have now considered ine a orbltals In the COz problem In a good deal of detail! we 
shall next take up the w orbltals, though not going Into them so thoroughly.   We have aw. or- 
bital on each of the atoms, so that as mentioned earlier, we can set up three «   molecular or- 
bltals.  The w+ orbital on the carbon atom depends on r and 8 through ihe factor r sin «: tnat 

2lF- Bloch,  Z. Physlk 52,  555 (1928). 
*2J. C Sl*t«r,  Revs,  M^-m Phy*.  A.  2f»? (1934),  ••« p. 247. 
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Is,  it is always positive, and ha* then the same value for equal positive and negative values of 
; 

s, provided the angle 4 »• the same.   Inversion through the origin can be thought of as made 
up of two operations:   reflection in the plane z » 0, which does not change the value of the 
function, and rotation through 160° around the axis of the molecule, or Increase of 4 by 180°, 
which changes the sign of the factor e     which appears in the wave function.   Hence this func- 
tion is of the u form,  changing sign on an Inversion.   The sum of the two oxygen w+ orbltals 
similarly has a u symmetry, and the difference has a g symmetry.   Thus we have two u 
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symmetry orbitals,  and one g,  made out of these «   atomic functions,   so that *he g function 

is uniquely determined without solving a secular equation,  and we must solve a quadratic 
secular equation to find the two u's.    We shall have another set of two u's and one g,  deter- 

mined from the »_'s,  degenerate with the first set.    Mulligan has determined these functions, 

•ind expressed them in terms similar to those of Table VII. 

Now that we are familiar with the molecular orbitals,   *e can consider which ones are 

occupied in the ground state of the CO, molecule.    Mulligan has found the one-electron ener- 

gies of the orbitals, and his major Interest is to compare these with observed energy levels 

as found in the band spectra; the argreement is quite good.    For our present purposes, how- 

ever, we care only about the order of the levels.    The molecule has twenty-two electrons, 

six from the carbon,  eight from each oxygen.    The futeen molecular orbitals would acccmo- 

d?t« thirty electrons,  so that the highest four orbitals, capable of holding eight electrons, 

must be unoccupied, and the remaining ones are those filled in making up the determlnaniaJ 

wave function.   These highest four orbitals prove to be the 3cr   and 30*   given in Table VII 

and Fig. 4, and the higher of the two w 's formed from the w   and w_ atomic orbitals.   Thus 

we understand exactly how to construct the molecular orbital wave function. 

A great deal of thought has gone Into the problem of how to estimate the nature of the 

molecular orbitals, and the value c! their or.c -electron energies, in molecules of various 

types, without actually going through calculations such as Mulligan has made.    We  have 

noted in our historical survey that Mulllken and others for many years have been engaged in 

Interpreting band spectra, with comparatively little use of detailed mathematical analysis. 

The methods used have mostly amounted to qualitative attempts to understand the nature of 

the wave functions, and to see what features of the wave functions are associated with bonding. 

Thus from ri. we assume that a molecular orbital like the symmetric function a + b, which 

has a maximum in the region between the atoms, has a lower energy than an orbital like the 

antisymmetric function a - b, which has a node between the atoms.   We can see why this 

should be so, in either of two wayj.   First, it is a general rule of wave mechanics that in- 

creasing the number of .nodes increases the energy of the wave function, though this rule can- 

not be taken uncritically in any problem in more than one dimension.   Secondly, the charge 

distribution bctwee-    .*e nuclei in the symmetric function Is In a region where the potential 

energy is lowered, on account of the fact that in this region both nuclei are attracting the el- 

ectronic charge, and this lowers the energy of this state in comparison to the antisymmetric 

case, where charge Is removed from this region between the atoms.   In similar ways we can 

argue that the orbitals denoted as la   and la   tn Fig. 4, which have large charge concentra- 

tions and no node? between the carbon an* <-»«yg<>n atoms, should correspond to strong binding, 

and orbitals 3ov and 3a , which have nodes between the carbons and oxygens,  should have g u "" 
high energy and discourage binding.   Such qualitative arguments have been very useful, but 

as time goes on and we set more and more quantitative results like tho«e of Mul'.'gsr., we 

shall no doubt have less need of such methods. 
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4. SIMPLE PLANAR MOLECULES - - WATER AND *TTHYLENE 

The chemists generally draw the CO, molecule by showing double bonds between the 

atoms. 0=C=0.  In order to satisfy their general rules that two bonds arc to be attached to an 

oxygen aiom.  and tour to a carbon.    Mulligan undertook his study to see what would be meant 

by this double bond.   It is clear that the actual situation Is complicated.    However,  one fea- 

ture that Is definite In the structure Is that both <r electrons and w electrons are Included In 

the bonding process,  and this seems to be a characteristic of a douole bond.    We shall see 

later that o*-type electron alone are concerned In single bonds,  just as In hydrogen.    On ac- 

count of the way In which the wave iunctions are spread over the molecule,  however, as 

shown lii Pig. 4, it Is rather clear that we cannct assign some of the electrons to the forma- 

tion of bonds, and others to the separated atoms. In eny such definite  way as the chemists 

are accustomed to do. 

4. Simple Planar Molecules ••- Water and Ethylene 

We have now become fairly familiar with the problem of the linear molecule, and 

shall go on to the next degree of complication, a molecule in a plane,  using aa Illustrations 

two simple cases, water and ethylene.   We first take water, a triangular molecule with the 

oxygen atom at the apex, the lines from oxygen to hydrogens making an angle of something 

over a right angle.   For the sake of having the geometry definite,  let us take the plane of the 

molecule to the yx plane, the c axis being the bisector of the angle between the two OH bonds, 

and the oxygen being at the origin.   Then we note that there are a number of symmetry opera- 

tions which can be applied to the molecule, leaving it unchanged.   Thus we can reflect in the 

y» plane, or change x Into - x; we can reflect in the x? r'*"e> changing 7 lnto - y. »o that one 
hydrogen changes into the other.   We can rotate about the s axis through 180°, but this op- 

eration Is not independent of the others) it is easy to show that successive reflections in the 

ys and the xs plane are equivalent to such a rotation.   We may then reasonably expect that 

every molecular orbital will be symmetric or antisymmetric on reflection In ihe y* plane, 

and symmetric or antisymmetric on reflection in the xx plane. 

We expect that there will be no degeneracy left In the molecular orbltals In this prob- 

lem.   Let us see why this is, in an elementary way.   Let us suppose that we started with a 

fictitious problem in which the hydrogen atoms were brought into coincidence with each other | 

and with the oxygen atom, so that all three nuclei were located at the origin.   Then we ask 

what happens as we move the two hydrogen atoms, still coinciding with each other, away from 

the oxygen atom along the x direction., to form a diatomic molecule.   Finally we separate the 

two hydrogens, moving one In the + y direction, the other in the - y direction, to form the 

triangular configuration of the actual molecule.   The original combined molecule Is Identical 

with a neon atom, and has spherical symmetry,  so that In th   self-consistent field problem 

we have the degeneracy characteristic of ts* central field problem,  and all states of the same j 

I value. Independent of thulr m, have the same energy.   Thus In particular the three 2p or- 

h.tala all ^ave tl»e dac:< eacrgy.   Now we move the two ny<trc«ens,  still coinciding with eac'a j 
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o her.  along the z axis, to form a molecule which In fact would form an oxygen a'oro *»"d a 

heliim atom.    We should now have ths type of linear symmetry considered in the preceding 

section.    All orbltals would have quantized angular momentum about the z axis.   Out of the 

oxygen atomic orbltals we could construct symmetry orbltals of a a and a w type.   The w 

orbltals would have angular dependence of the form of e   "T  wiih respect to rotation about the 

axis,  and would be zero along the iitternuclear axis, while the c orbltals would be independ- 

ent of rotation,  and would have their maximum values along the axis.   Thus these two types 

of orbltals would have quite different energies,  since the a types are more concentrated in 

tha region between the two atoms than tne * types.   We must realize that, since we are not 

dealing with a homopolar molecule,  w? shali not have g and u-type combinations, but never- 

theless some orbltals will have nodal planes between the two atoms,  and others will not, and 

the a -type orbltals with no nodal planes will have lower energies, those with nodal planes 

will have higher energies, while the w-type orbltals will not be split so much in their energy. 

We are still left with a certain amount of degeneracy with this linear molecule:   with 

each w-type orbital we have two degenerate states corresponding to wave functions with fac - 

tors e       .   We can also write these wave functions in a different way, more convenient for 

what will follow immediately.   We can write the functions with factors cos • and sin •, or 

what is the same thing, with factors x and y, giving nodal planca respectively as the yx and 

xs planes.    That is, the first type of function is antisymmetric with respect to reflection in 

the yz plane, the second antisymmetric with respect to reflection In the xz plane, but each is 

symmetric with respect to reflection in the other plane.   Now let us see whst happens when 

the two hydrogen atoms are separated as in the actual molecule.   It is clear that the effects 

on the w-like functions with nodal planes In the plane of the molecule, the yx plane, will be 

quite different from those with nodal planes in the xz planet the former types of orbltals a«"« 

zero at the positions of the hydrogen atoms, while the latter types have maxima here.   Thus 

the degeneracy between the two types of functions which would be w-orbltals In the linear case 

Is removed, and at the same time we see that by setting up our functions with nodal planes In 

the ys or xs planes, -we automatically have got the correct sor t to represent the symmetry of 

the final mol*fu!«. 

It le perhaps worthwhile at this point to say something a little more profound abcut 

the requirement that our wavi functions L»a symmetric or antisymmetric or. reflection in the 

xs and ys planes, and that the degeneracy be removed; this Is the sort of statement which we 

shall have to make In all the various types of symmetry which we shall meet, and while we 

shall not go into the group theory to prove the consequences of the symmetry in the matter of 

the behavior of the wave function, nevertheless we may as well begin to understand the funda- 

mentals of symmetry operations.   In the first place, an operation of reflection, or of rota- 

tion,  is not In principle different from any other operation In quantum mechanic^.   To reflect 

In the yx plane, for Instance, we have seen that we change x Into - x.   In other words,  under 

this operation a given function of x, y. and r. is changed i.-.U another function.    The new func- 
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tion may be identical with the original function (if the original function is symmetric in :c) or 

equal to its negative (if it is antisymmetric).    More generally it might be a quite different 

function.    If we have such an operator,   which we may call R,  we can Jet this operate on each 

wave function of a complete orthogonal set,   and obtain <n this way a set of functions Ru.. 

Ru2>  ....  where u.,  u,,  •  • • formed the complete orthogonal set.   These transformed 

functions may in turn be expanded in terms of the complete orthogonal set,  so that we may 

Tind the matrix components of R,   *hlch are just th<» expansion coefflcUi.ts:   Ru,  -  7\i)J»«ur 
If Fl.. is a diagonal matrix,  the operation R transforms u. into a constant times Itself,  and 

in the cases of symmetric and antisymmetric functions this constant is 1 and - 1 respective- 

ly.    If R,, is not diagcr.*.1.  P"   must be written as a linear combination of more than one 

member of the complete orthogonal set. 
Before we are through, we shall find examples of both diagonal and non-diagonal ma- 

trices for such operators, but our present simple case,  where all functions are either sym- 

metric or antisymmetric with respect to reflection both in the yz and the xz plane,  is one 

where both these operations, which we may call R     and R    , simultaneously have diagonal 

matrices.    We realize from our general knowledge of quantum mechanics that we cannot have 

two operators whose matrices are simultaneously diagonal unless two conditions are satis- 

fied:   first, each operator must commute with the energy, in order that its matrix asjr b- 

diagonal with respect to functions which are cigenfunctions of the energy;  secondly,  the two 

operators must commute with each other.    If the two operators both commuted with the en- 

ergy, but did not commute with each other, we could make either one diagonal, but not both. 

We have met this situation before:   In Chapter 1, we found that the x, y,  and z components of 

angular momentum have operators each of which commutes with the energy, but which do not 

commute wlih each other.   We then were able to diagonaiize one of these operators,  which 
j 

we generally chose to be the z component of angular momentum, but could not diagonaiize 

the others.   The x and y components of angular momentum had non-diagonal matrix com- 

ponents, and yet they represented constant quantities,  since they commuted with the energy. 

The way they achieved this was that there was degeneracy,  and the x and y   components had 

non-vanishing matrix components only between two degenerate states, whose time depend- 

ence therefore had zero frequency. 
We now see that this situation can be perfectly general.    If we have two symmetry 

operators,  say R. and R,, both of which commute with the energy,  but which do not commute 

with each other, then we can choose elgenfunctlons which will diagonaiize both the energy and 

one of the operators,  say R..    But then R, cannot be diagonal,  so that we must have degen- 

eracy, and R, will have non-vanishing matrix components between the various degenerate 

states.    This situation, then,  of having non-commuting symmetry opei ators,  necessarily 

leads to degeneracy.    We shall later have more to say about why the angular momentum op- 

erators have these properties, so that we get the degeneracy in problems of rotational sym- 

metry.    For the Moment,  however,  we are more Interested in the simpler cases where all 
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symmetry operators commute with each other as well as with the energy.    For In this case, 

whtch we have with water,  we can diagonallze each of the symmetry operators,  so that each 

operator must transform the eigenfunctlon into a constant tines itself,  the constant in this 

simple case being either • 1 or - 1.    Asa result of this we have no degeneracy. 

We must check, before we go further, that our t>? reflections R _ and R _ commute " yz xz 
with each other and with the energy.    In the first place,  all the symmetry operators we shall 

consider commute with the energy: this is their fundamental characteristic.    We can easUy 

show that any symmetry nprrztor ~hich transforms the potential energy into itself will com- 

mute with the Hamiltonian.    The reason is simple, as we can see from the ca*e where the 

operation is transforming x into - x.    We have in 'his case Ru(x, y, z) * u( - x, y, «).    Thus 

HRu(x, y,  z) • Hu( - x, y,  z).   But RHu(x, y,  z) is what we get when we transform x into 

- x in the function Hu(x, y,  z).    We find x appearing in this function both through its tppear- 

ance in u, and in H.   In H it appears in the kinetic energy (where changing x into - x ob- 

viously makes no difference),  and in the potential energy, where by hypothesis no change is 

to be made by the transformation.   Thus the result is Hu(-x, y, z), so that we see that HRu 

• RHu, or R and H commute with each other. 

As for the other fact, that our two reflections commute with each other, this is al- 

most obvious.   The first operation changes x into • x; that is,  it changes the first of the 

three arguments of  u Into its negative.   The second changes the second of the three argu- 

ments of u into its negative.   It is obvious that these operations can be applied in either or- 

der.   We must be on our guard at this point, however:   we shall find some operators before 

we are through «>hich do not cc ute Ti*h scsh other, sc tZ&X we must examine each case 

carefully. 

We have now digressed long enough to examine the philosophy behind the s; —.metry 

of our orbltals in the case of water, and we may return to the very simple situation win h we 

remember that we have here.   First, all orbltals must be either symmetric or antisymmet- 

ric on reflection in the yz plane, the plane of the nuclei} second,. all must be symmetric or 

antisymmetric on reflection in the xz plane, a reflection which carries one of the hydrogens 

Into the other as to its mirror image.   It is rather customary In such planar molecules to 

use a notation somewhat similar to that for linear molecules:   the orbltals which »-<• •rtlsym- 

metrlc In reflection In the plane of the nuclei are often called « orbltals,  and those which are 

symmetric are called <r orbltals.    Let us now ask how orbltals of the required symmetry 

types can be built up as linear combinations of the atomic orbltals.   We consider the Is,  2s, 

and 2p atomic orbltals of oxygen, and the Is of hydrogen. 

We note In the first place that If we write the oxygen orbltals In the form of Is,  2s, 

and 2p ,  2p ,  2p ,  where 2p ,  2p .  2p   are of the form xf(r), yf(r),  zf(r),  th»-c orbltals al- x        y        z x        y        z 
ready have the proper foi m for symmetry orbltals:   pach one is either symmetric or anti- 

symmetric when x goes into - x, or y goes Into - y.    The two hydrogen Is orbitals by them- 

selves cunnoi se»-ve as symmetry orbi'als,  however, fur they are i.-ither symmetric nor 
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antisymmetric on reflection In the xz plane.    Instead,   we must make, symmetric and antisym- 

metric linear combinations of them,  just as we do in the hydrogen molecule:   the sutu rej>re- 

sents tne symmetric combination, the difference the antisymmetric.    We thus have seven 

symmetry orbitals from which we can construct seven molecular orbitals.    Of •h»cc,   four. 

which are respectively Is, 2s,  2p , and the sum of ihe hydrogen orbitals,  are even in both 

x and y; two, 2p   and the difference of the hydrogcu orbitals,  .ire even in x,  odd in y;  and 

one,  2p , is odd in x,  even in y. and thus represents the only w orbital of the lot.    None of 

these functions are odd In both x and y,  though if we went to higher quantum numbers we 

should find functions of this sort.   To find the molecular orbitals, we then must solve a bi- 

quadratic equation to get the orbitals even in x and y (though we may assume,  as Mulligan 

did in CO?, that the Is by itself represents one of the or'uiiala,  su liuti we ttecu u»u> aulve « 

cubic for the three reamlnlng ones).   We must solve a quadratic to get the functions even in 

x,  odd In y;  and we already have Ihe functions odd in x, even in y. 

When we do this, we find that of the three orbitals formed from 2s,  2p ,  and the sum 

of the hydrogen orbitals, the two of lower energy will both correspond to having considerable 

concentration of charge between the oxygen and the hydrogens,  having some of the charac - 

teristlcs of the symmetric orbital a + b In the H, case, or the lowest oi-bitals in the C02 

case as shown in Fig. 4.   The highest energy of the three will go with an orbital which has 

nodes between the oxygen and the hydrogens.    Similarly of the two functions formed from 2p 

and the difference of the hydrogens, the one of lower energy will have concentration of charge 

between oxygen and hydrogens, while the higher will have nodes.   As for the * orbital, it has 

no considerable charge distribution near the hydrogens, and Is unimportant as far as the 

binding is concerned.   In the ground state of the molecule, where we have ten electrons to 

accomodate, eight from the oxygen and two from the hydrogens,  we shall have two electrons 

each in the lower five of these orbitals; the empty ones will be those which, as we have just 

seen, have nodes between the oxygen and the hydrogens.   The charge distribution correspond- 

ing to this determinantal function will then have concentrations between the oxygen and the 

hydrogens corresponding in a general way to the two bonds, but also there will be the con - 

centratlon arising from the * electrons, extending in a direction perpendicular io the plane 

of the nuclei.    This concentration In the w crblt&l becomes particularly Important In the case 

of ethylene, which we shall take up next, and which in some ways resembles two water mole- 

cules placed adjacent to each other. 

The ethylene molecule, C,H4,  as we have just stated,  is much like two water mole- 

cules In its shape.    Along the z axis we may locate the two carbons,  spaced at equal ils- 

tances from the origin.   The two hydrogens attache 1 to each carbon are in a plane, which as 

with water we take to be the yz plane,  stretching out in two triangles much like water mole- 

cules In shape and size.   Our molecular orbitals, as with water, must be symmetrical or anttsym- ' 

metrical on reflection in tr.eyz and xz planes.   Here, however, we have an additional symmetry 

operation, reflect'on In ihe xy plane, which brings one CH? group into the position formerly or cu- 
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pled by the other CH,.    Since these three reflections all represent operations which commute 

with ?ti.ch other,  the molecular orbltals will be elgenfunctlon? for each operation  and ihey 

will be symmetric or antisymmetric when ws carry out reflections in this xy plane. 

To set up the symmetry orbltals, we can first proceed just as In water,  setting up 

seven orbltals for each CH2 group.   For each,  we have the carbon Is, 2s, and 2p . and the 

sum of the hydrogen Is functions,  giving four functions which are even on reflection in the yz 

ojid th*> xz planes; the carbon 2p , and the difference of the two hydrogen Is functions, giving 

two functions which are even on reflection In yx, but odd In xzt  and the carbon 2px,  a * or- 

bital, odd on reflection In yz,  r ven in xz.   None of these orbltals as they stand are either 

symmetric or antisymmetric on reflection In xy, but we can make sums and differences of 

the seven orbltals on the two CH, groups, so that each of the aeveu orbltals of each group 

generates two orbltals for the whcie molecule, one even and the other odd on reflection inxy. 

We thus havs fourteen orbltals, capable of holding twenty-eight electrons; but the molecule 

has only sixteen electrons, so that six of the fourteen orbltals must be empty in the molecu- 

lar orbital representation of the ground state of the molecule.   It Is very important, then, to 

cons* *-- the order of the energies of the various orbltals, to see which ones are occupied. 

n   he first place, If the CH, groups were far enough apart so that they hardly inter- 

acted * X  each other at all, the final molecular orbltals, as well as the symmetry orbltals, 

would be very nearly the sums and differences of the symmetry orbltals on the two groups, 

and since the overlapping of the two would be very unimportant, the symmetric and antisym- 

metric orbltals generated from any single orbital of the CH, problem would have almost ex- 

actly the sams energy.   Thus we could expect that In this case the orbltals would resemble 

strongly those which we have described for water,  supplemented by their mirror Image (with 

or without change of sign) on the other group.   As with water, we should expect that the two 

highest symmetric orbltals, and the two highest antisymmetric ones, would resemble the two 

which are unoccupied, In water, having nodes between the carbon and the hydrogens.   This 

would leave five orbltals which are symmetric In the xy plane,  and five which are antisym- 

metric,  capable of acc'omodattng twenty electrons.   When the CH, groups come closer to- 
gether,  however, each of the orbltals which is antisymmetric on reflection in the xy plane 

has a node betv/een the two carbons, while the symmetric orbitals do not.   Thus we may rea- 
« 

aonably expect a considerable splitting of those orbltals whose wave functions overlap con- 

siderably In the region between the carbons, the symmetric orbital having its energy lowered, 

the antisymmetric ones having the energy raised. 

There are two orbltals out of each CH, group which h»*e ihia property of havi-.g con- 

siderable density between the carbons. Going back to the problem, of water, we remember 

that the five occupied orbltals had the following behavior: one was essentially the oxygen (or 

in this case the carbon) Is orbital; a second and third were combinations of the 2s, 2p. and 

the sum of the hydrogen orbltals; the fourth was a combination of the oxygen 2p and the dif- 

ference of *hs hydrogeiiv th« fifth was the &py, a « orbital.   Wb*n we examine the actual 
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charge density in these cbltals,  we find of course that the Is is concentrated near the nu- 

rlcur,   so thi.? these orbitals will not overlap or interact,    Of the two combinations of the 2s, 

2p ,  and the ?um of the hyJrogens,  one has a charge concentration which is largely located 

between the oxygen tor carbon) anJ the hydrogens,  and is largely responsible for the oxygen- 

hydrogen binding.    The otner is rather small between the oxygen and hydrogen,   having a nodal 

surface,  and is large on the side of the oxygen away from the hydrogens-    That is,  this or- 

bital Ls one of those which, in the ethylene molecule,  will have large concentration between 

the carbons.    Thus we expect that in ethylene the symmetric combination of these orbitals 

will correspond to a binding effect between the two carbons,  while the antisymmetric com- 

bination will have a much higher energy, and will be unoccupied in the molecule.    Next we 

«ome to the combination of the carbon 2p   anJ the difference of the hydrogens.    This has a 

concentration which is largely between the carbons and the hydrogens,  so that it contributes 

to the carbon - hy Jrogen binding, and has small charge density between the carbon:;.    Both the 

symmetric and antisymmetric combinations of these orbitals on the two CH, groups will then 

have about the same energy, though the antisymmetric orbital will lie somewhat h ghs.-, »nd 

both will be occupied in the ethylene molecule.    Finally the * electrons are not shared with 

the hydrogens, forming molecular orbitals by themselves.    Thus they will extend to a con- 

siderable extent toward the other carbon,  and tftetr symmetric combination will correspond to 

• considerable binding effect,  and will be occupied in the molecule,  while their antisymmetric 

combination will have a much higher energy,  and will be unoccupied. 

We have thus identified the orbitals which are occupied in the completed molecule. 

We see that in water there are two orbitals,  one of <r type and one of » type,  which do not 

take part in the binding with the hydrogens,  but which are located so that the corresponding 

orbitals in ethylene can extend from one carbon toward the other.    In water each of these or- 

bitals is occupied by two electrons.    Such pairs, not contributing to binding,  have been called 

lone pairs by Lennard-Jones.    In the ethylene molecule,  the orbitals corresponding to these 

lone-pair electrons combine into a symmetric, binding combination,  and an antisymmetric 

combination of much higher energy.    The lower,  binding orbital is occupied by twe electrons 

in each case,  while the higher orbitals is empty,  consistent with the fact that ethylene has 

four fewer electrons than two water molecules.   The two lone pairs,  so to speak,  are shared 

between two carbons. 

According to the language of the chemists,  there is a double bond between the twe car- 

bons in ethylene,  and since the time of G   N.  Lewis such a double bond has been identified 

with two pairs of electrons.    We now see that this corresponds closely to the facts.   One of the 

double bends is formed from an orbital of the <r type,  one of the w type,  and this seems to be 

a general characteristic of double bonds.    There is now a ve«/ important experimental iact 

abyut this double bond in ethylene,  and in other cases:   it does not show the property of free 

rotation.    Ethane.  C /A^.  d?f»er« f.om ethylene in that e'.hane has a single oond bet* £ en ii.« 

carbons,  and the three hydrogens are located in-a triangle in a plane normal to tne C-C axis, 
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on <*"* far side of the carbon fz om the other CH, group,   so tb=*t the f'.re* hyd? -.wens and the 

one carbon surrounding each carbon form approximately a regular tetrahedron.    It is now 

found that in ethane either triangular set of hydrogens is very free to spin around the axis of 

the molecules   there is only a very slight tendency for the two groups of hydrogens to take up 

a definite orientation with respect to each other, and this tendency is thought to arise from 

the interactions between hydrogens on the two CH, groups,  a very small interaction on account 

of the large distance.    In ethylene,  however, the situation Is completely different.   The mole- 

cule definitely wants to form a planar configuration.    An attempt to rotate one of the sets of 

two hydrogens with respect to the other two, around the axis of the molecule,  meets a very 

considerable restoring force,  as one can find from band spectra,  where the frequency of such 

twisting oscillations can be observed.   The obstacle to the turning is much more than can be 

explained from any hydrogen-hydrogen Interaction; there must be something in the double 

bond itself which opposes this rotction. 

This feature of the double bond was brought out in the first treatment of the ethylene 
(23) 

molecule and of the double bond, by Huckel. In this paper,  one of the first dealing with 

polyatomic molecules by the mulccular orbital method,  Huckel set up the molecular orbitals 

much as we have done,  and fixed his attention particularly on the « orbitals.    We shall find 

later that these are the ones missing in ethane:  the single bond in ethane is much like that 

forrr.ed from   cr  orbitals in ethylene.    The w orbitals in each of the two CH, groups have their 

greatest intensity alone; a line perpendicular to the plane of the molecule.    Now if the molecule 

is twisted,  of course we lose the planar symmetry; but in a very crude way we can say that 

each of the CH, groups would carry its « orbitals with it as the two groups were twisted with 

respect to each other.    When the molecule Is not twisted, the w orbitals on the two groups 

point in the same direction,  and can overlap to a maximum extent.   This overlapping of course 

does not occur on the line Joining the carbons, for the * electrons have a node there; it occurs 

in two regions, one above and one below the plane of the molecule*.    Once the molecule Is 

twisted, however, the regions of the maximum amplitude of the v electrons of the two groups 

no longer are found to overlap *»s much as before,  and the overlapping is reduced.    We assume 

that this overlapping is what is responsible for the reduction in energy of the symmetric or- 

bital, and the Increase In energy of the antisymmetric one;  in oiher words,  for the tightness 

of binding.    We s'.-U later have definite verification of this,  when we begin to consider the cal- 

culations of the energies of orbitals.    Thus we see,   following Huckel, that twisting the mole- 

cule will make a considerable increase in energy,   and we understand the stiffness of the double 

bond in opposing rotation.    This explanation was one of the first real successes of the theory 

of the chemical bond,  and later more quantitative calculations iiiv* bcrne out the correctness 

of Huckel's interpretation. 

'E.  KtcfceJ.   Z    Ptej-Uk 60.  42* (lO^G). 
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5^ The Benzene Molecule 
We have alrea !y quoted,  in Section 2,   'he paper? en the benzene molecule which 

Huckel wrcte soon after he considered the ethylene molecule and the nature of the double bond. 

Let us now go a good deal more deeply into this problem,   for it is a very informing one in 

many ways.    In the first place,  like water and ethylene,  it is a planar molecule,   so that one 

symmetry oyciation corresponds to reflection in the plane of the molecule.    Now,   however, 

in contrasi io previous cases,   we have a large number of symmetry operations,   which do not 

all commute with each other,  so that we must look for degenerate wave functions.    Before 

going 'urthcr,  let us make a complete analysis of these symmetry operations,  so that we can 

„ M we give in Fig.   5 a diagram of the molecule. 

\ / Let us ncv list all the operations we can think of which 

/c c\ will carry it into itself,  aside from the reflection in the 
/ \ / ,V plane of th^ molecule which we have already mentioned. 

/ B-''    \ /       s ,-' 0     \ In the first place,   we can rotate the whole figure about 
M«—<c ;»-' c> »H 0 0 

\ ,'' / its center,  by 60  ,  or any integral multiple of 60  .    Six 

V' / successive rotations through 60   bring the molecule back 

V c/ to its original position,  or correspond,  as one says in 

/ \ group theory, to the identity operation.    It is a character - 
Fitf     5 M •' M istlc of the symmetry operations which we meet that a 

sufficient number of repetitions of one operation will always correspond to the identity opera- 

tion] this is a necessary requirement of a group of operations.    We have not pointed it out, 

but two successive reflections in the same plane correspond to the identity operation,  so that 

the reflections, the only operations we have considered so far,  fit in with this rule,    in addi- 

tion to the rotations,  however,  there are m.»ny other symmetry operations which bring the 

benzene molecule into coincidence with Itself.    Thus we can reflect in a plane perpendicular 

to the plane of the molecule,  passing through two diametrically opposite carbons,  like the 

plane Intersecting the plane of the paper In the line aa in Fig.  5.    We can niso reflect ir. n 

plane cutting midway between opposite pairs of carbons,  like that Intersecting the plane of the j j 

paper in the line bb in Fig.   5.    Finally we can rotate through 1S0° about any of the three axes 

like aa, or any of the three a\es like bb.    One such rotation,  however.  Is equivalent to suc- 

cessive reflections In the plane perpendicular to the paper,  passing through the appropriate 

axis,  and reflection In the plane of the paper,  just as we have already found in the case of 

water,  so that It does not represent an independent symmetry operation.    The operations 

which we have already mentioned Include all the Independent ones which we have with the sym- 

metry of the oenzene molecule. ; 

Let us now examine which of our operations commute with each other.    In the first 

place,  the rcta'.-'os of 60    vmi :nuUipies of it about the axis pc, LeMucuiar to the plane of the 

molecu.'e all commute with each other:   a rotattcu first through 60°.  followed hy one through 
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120 , for instance,   is clearly equivalent to one through 120 ,  followed by one through 60  •    If 

these rotations were the only symmetry operation's which we had,  then.   w<: could diagonalize 

their, all at the same time,  and in the actual case we are allowed to do so,  but not required to. 

Let us consider the consequences of diagonalizing tuem.    The effect cf rotating through 6c: 

would be to multiply each wave function by a constant,   which we nay call «»; this is the diago- 

nal component of the matrix representing ?•»« operation.    Mcf rotation thro'-jh '20   is equi- 

valent to two successive rotations through 60 ,  so that it must multiply the wave function by 

a •    Continuing In ihis way. we see that rotation through 360° must multiply by a   .    On the 

other hand, we have already seen that this is the identity operation:   rotation through 360 

really changes nothing,  and hence must leave the wave function unchanged,   cr must multiply 

it by unity.   Hence we see that a   must equal unity,  or that the only possible eigenvalues a 

for th* rotation operation must be sixth root3 of unity.    There are six such sixth roots,  which 

may be written in the form   a * em    '   ,  where m •  1,  2.   3,  4.  5,  6.    We shall make further 

use cf these values of a a little later. 

Before we go further,  we may generalize a little the argument we have just used,  and 

see that It applies In other cases as well.   Whenever the successive application of the same 

operation n times gives the identity operation,  then it is clear that if this operation has a di- 

agonal matrix, the diagonal matrix components,  or eigenvalues of the operator, must be one 

of the   n  n    roots of unity.    We may apply this principle to one example which we have al- 

ready met several times.    We have accepted,  so far without proof, the fact that if a reflection 

In a plane has a diagonal matrix, the diagonal matrix components must be 1 or - It that is, 

the wave function must be symmetric or antisymmetric with respect to this reflation    We 

now see that this furnishes the simplest illustration of the general rule which we have just 

stated.    For it is clear that two successive reflections in the plane are equivalent to an iden- 

tity operation, so that we have the case where n « 2, and the two possible eigenvalues of the 

reflection operation are tr<s two square roots cf unity,   1 and - 1. 

Now let us cons^Jer our reflection operations,  and see If they commute with the rota- 

tions, and with each other.   First, it is obvious that the reflections do not commute with the 

rotations.   We may easily see this either by a diagram or analytically.   Thus analytically we 

may investigate the effect of successive rotation through an angle 9. ?nd reflection in th* * 

axis, by writing the coordinates of a point In polar coorainates.    Let us start wiih ihe point of 

coordinates R, +.   First rotate through 6; the coordinates go to R,  (•• 6).   Then reflect In 

the x axis, and the coordinates go to R, (- • - 6).   Now we perform the operations in the re- 

verse order.    Starting again v.ith, R,  4.   we first reflect in the x axis,  going to R,   - ••    Then 

we rotate through 9, going to R, (-4+ 0).   It is clear that this is different from the result of 

the first operation. 

In a similar way, we can see that reflections In two different planes will not in general 

commute with each other. Thus 1»« »« Mart with a point of coordinates P.. *• • and reflect ilrst 

in the r. axis,  then In a plane making an ar.gle 8 wiiu the a axis.    The reflection in the x axia 
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changes the point to K,  (- 4).    Reflection in the plane making an angle ft with the x axis changes 
it to the point R,  {<*• + 29), this anple being as much greater than 6 as th» former angle • <J> 
was less than 8.    Let us now reverse the order of »h* operations.    Again we start with R, 6. 
but first reflect In the plane making an angle 8 with the x axis.   The point is charged to R 
(- 4 !   28).   Now we reflect in the x axis, changing the point to ft, (+ • 28,.   In other words, 
reflection In the two planes making an angle of 9 with each other has had the same effect as 
rotating through an angle 28,  in a direction pointing from the first plane toward '.he second. 
The two operations obviously do not commute with each other,  except in one special case:    If 
• = 90°, so that 28 • 180°, then they do commute, for rotation through 180° is equivalent to 
rotation through - 180°.   This explains why in our earlier problems we f tund reflections In 
two planes at right angles to commute wits *ach ether; but that represents the only case in 
which two successive reflections commute. 

There is another observation which we can make in our present case, however.   All 
reflection planes make angles of 30° or multiples of 30° with each other.   Thus any two suc- 
cessive reflections in different planes are equivalent to rotations through 60   or multiples of 
60 , or are equivalent to the rotation operations which we have already considered.   Then 
any even number of reflections are equivalent to rotations Already considered, and any odd 
number of reflections are equivalent to a single reflection, plus a rotation of the type already 
considered.   We can then generate all our symmetry operations from rotations and a single 
reflection,   But we have **ready seen that reflection in a plane making an angle 6 with the x 
axis changes the point R, + to the point R,  (- + • 28).   Since all the reflection plan?* make 
angles of multiples of 30   with the x axis, we see that this is eqiivalert to a reflection in the 
x axis, plus a rotation through a multiple of 60°.   Therefore finilly we conclude that the ro- 
tations of multiples of 60° about the axis normal to the plane of the molecule, which we take 
to be the z axis, plus reflections in the xx plane, are capable of representing all possible 
symmetry operations. 

We are now' ready to examine the consequences of the non-commutabillty of the rota- 
tions with the reflection in the xz plane.   We have a choice:   we may diagonalize the rotation 
operations. In which case the reflection will not be dtagonalized; or we may diagonalize the 
reflection,  and not the rotations.   In either case, by the general principles which we have 
examined before, we see that we must have a degeneracy.   Thus if we diagonalize the rota- 
tion operations. •»»• reflection operation must transform each wave function into another wave 
function, or a combination of oth«rs( but since the reflection operation commutes with the I 

Hamiltonlan, these other wave functions must correspond to the same energy values as the 
original one, so that we have degeneracy. We can understand the situation much oeuer by 
seeing how the wave functions arc described, in detail. 

Let us first consider the case in which we diagonalize the rotations.   Then we have 
•Vearfy §een *hat totation through 60 , or through tUe angle »/3, mu»t multiply the wave 
fu~.ctlcn by on* of the si^ tijjeRvsiuaa s nil"'   ', where m •  1 . . 6.   In other words, the wave 
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function behaves under a rotation exactly like the function e       .    We can be more precise 

*hii> this.    Let us consider the behavior of the wave function in cylindrical coordinates,   r, 9, 

z.   Then rotation through an angle  9 = T.'J,  keeping r and z   constant,   will multiply the 

function by e,mw'   .   This is consistent only with the assumption that the wave function itself 

is a product of a factor e m*, by a function which is periodic with period w/3 on rotation. 

This is a special case of Floquet's theorem,  whose use in the theory of energy bands in crys- 

tals Is familiar to the solid-state theorist.    We may tnen write u(r, 9,  z) = eim* v   (r, 9.   *.}. 

where v(r, 9 • w/3,  z) = v(r, 9,  z). 

Now let us Inquire regarding the effect of a reflection in the xz plane,  on such a wave 

function.    We start with the six wave functions corresponding to m «  1,  2,   3,  4,  5,  6.    When 

we reflec* In the A« plane, the function c     • »_{*» 9.  *) g"*s Into c v
m^r'  " ^'  z^'    This 

must be expressible as a linear combination of the original six functions,  and the coefficients 

of this combination represent the matrix components of the reflection operation.   Now we 

note that when we rotate through w/3, our function e"    * wm(r»  " •• z) *8 multiplied by the 

factor e"     *'   .   This factor, however, equals e '   "m   •   ,  which la just the original factor 

multiplied by e w   •  1.   In other words, the function which we get by letting the reflection 

operate on the function with a given m transforms into a new function which behaves under a 

translation like the function whose Index is 6 - m.   Since we havs only one function which 

transforms In this way, our rotated function must equal a constant times the function cor- 

responding to 6 - m.   We find, In other words, that the function with a given value of m, and 

with the value equal to 6 - m, are degenerate with each other.   To be specific, the functions 

with m =  1 and 5 are degenerate,  and those with 2 and 4 are dc-gencate. 

These relations become easier to understand if we note multiplication by the factor 

e '       m/"/    is equivalent to multiplication by e~     *'   ,  as has been mentioned earlier.   Thus 

we could from the beginning have denoted our six states by the values m  -  0,  t 1,  t 2,   3. 

Rotation through w/3 leaves the function with m = 0 unchanged; multiplies those with m * t 1, 

t 2 by e    w'   , e      *'   j and multiplies that with m = 3 oy - 1,   Then our statement regard- 

ing energies is that the states with equal positive and negative values of m are degenerate 

with each other,  a very natural result.   We have,  then, four distinct energy levels, for m  = 

0,   1,  2,  3,  out of our set ci six functions, the states with m =  1,  2 being two-fold degenerax • 

We should now expect that we could choose our functions as linear combinations of the 

six which diagonalize the rotations,  in such a way as to dlagonallze the reflections in the xz 

plane.   In making these linear combinations, we are allowed of course only to combine states 

which are degenerate with each other,  for only in this way will we still have elgenfunctions of 

the energy.   Since there is only one state with m = 0,  and only one with m = 3,  these func- 

tions themselves must be eigenfunctiona for the reflection.   In other words, they must trans- 

form Into themselves,  or into the negative of themselves, under a reflection In 'he xz plane, 

or thr.v must be symmetric or amisyinmeU 1c functions with respeo ;o a transformation of y 

Into - y.   We have two states  however,  with m = t !,  and two with m = t i,  and we must be 
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able to set up linear combinations of these which are elgenfunctions of the reflection.    Putting 

it another way,  we see that we can write the functions corresponding to m * t 1, or m * t 2. 

in the case where we are diagonalixlng the rotations,  as linear combinations of one function 

symmetric in y,  and another antisymmetric in y. 

We now know enough ab~"t the symmetry properties of our WBV? functions so that we 

can start constructing symmetry orbitals out of the carbon and hydrogen atomic uruiiais in 

the benzene problem.    Let us start with the simplest case, the Is atomic orbitals of the car- 

bon atoms.    Let ><s number the carbons by an Index j, j « 1 corresponding to that which Is ai 

an angle w/3 to the x axis, j = 2 to that wm>h is at an angle 2t/3,  and so on. up to j = 6, 

which i« nn the x axis.    We may then denote the Is orbitals of the atoms as s.,  s, •  • s«. 

Now let us make the linear combination 

We shall now show that this combination has all the proper characteristics to make it a sym- 

metry orbital.   In the first place, we ask what happens to It when we rotate through w/3, or 

when we change the angle $ Into <? • w/3.   This of course transforms s.(r, +, z) Into s (r, 

+ + w/3, z).   That is, we are now looking at the Is function s. on the jtn atom, not at the point 

r, 4,  z, but at a point rotated through w/3 with respect to this point.    But this is equal to the 

value of the function s. _ . at the position r, 4,  z.   In other words, the operation of rotating 

through w/3 transforms u   (r, + , z), as given in (3. 1), into 

um(r, + • */3.  z) = Hi) £
lm>/3 s. _ t(r, •, z) . 

But by changir g the name of the index of summation, this may be transformed at once into 

um(r.  ••w/3.  z) .I<J)«tm(J*l,w/3s,(r, *,  z) - ,imw/3 um(r. •. z) . (3.2) 

From Eq. (V 2),  we see that the function (3. 1) transforms under a rotation as our lunctioas 

should If they are set up to dlagonallze the rotations. 

We may next check the fact that our function (3. 1) transforms properly under a re- 

flection In the xz plane.    For m = C,  we have the sum of the Is functions on all carbon atoms, k 

a function which is clearly symmetric on reflection.    For m * '.  we have the sum of Is func- 

tions with alternating signs,  .» function which again is symmetric on reflection.    For m « t I, 

our function may be rewritten in the form 

u+1   » |s& • -fs, + s5 - s2 - s4) - s3| t 0.866l(Sj * »5 • »2 - »4) . 0- 3) 

where 1/2  * cos w/3,   0. ***  • sin w/3.    Now the functions s. ar»d s, are 'he reflections of 

each other in the xz plane.  anJ s, and z. arc reflections of each ctbe.    Thus we see that the 

first term In Eq. (3. 3) is symmetric on reflec ion in the XT plane,  and the second is antisym- 
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^:tric, so t'.jai we have shown how to write oar functions for m » t 1 as a sum of symmetric 
and antisymmetric functions.   These symmetric and antisymmetric functions are themselves 
the eijfenfunctions of the reflection, in ense we choose to diagonaiize the reflection rather 
than the rotations.    We note that these functions also diagonaiize the reflection in ihe yz 
plane,  which interchanges Sj and s,,  s4 and s,.  and Sj and »fe.   The first term of (3. 3) is 
antisymmetric in this reflection, the second symmetric.    It is of course to be expected that 
a wave function which diagonal! zes the reflection in the xz plane will also diagonaiize that In 
the yz plane,  since these two reflections commute with each other. 

In a similar way, the functions for m • t 2 can be rewritten In the form 

a*2 "   ls6 "  2^sl + s4 * •? * ss) *  s3f   *  0. 866i(s. - s, • s^ - s,) . (3.4) 

Here again the first term Is symmetric, the second antisymmetric, on reflection in the xz 
plane; but now the first is also symmetric, and the second antisymmetric,  on reflection In 
xy.   It Is now an interesting thing to observe that the two functions, one symmetric and the 
other antisymmetric In xz,  appearing in (3. 3), are degenerate with each other, though they 
are of quite different appearance:   that is, the two functions s-  +  l/2(s. •• s5 - s, - s.) - s, 
must have the same diagonal energy as 0. 866(s( - s. * «, - s^), and similarly the two func- 
tions of Eq. (3.4) must have the same energy.   In »he*e functions, and all which we have writ- 
ten so far, we should point out that we have not yet normalized the functions, and of course 
this must be done before we can properly compute the matrix component of the energy or of 
other operators. 

We have now shown how to set up six symmetry orbite.ls out of the carbon Is atomic 
orbltals.   Since these orbitals diagonaiize the symmetry operations which commute with the 
energy, there will be no r.on-dtagonal matrix components of energy between them, so that use 
of them will help in factoring the secular equation, as in the previous problems.   We shall 
later consider the solution of this secular equation,  so as to find the energy levels, but even 
before doing so, we can use our general knowledge of the behavior of wave functions to deduce 
the order of the one-electron energies.   The function for m = 0 is simply the sum of the func- 
tions on the various carbons.   Thus it will have no nodes, will correspond to a piling up of 
charge density between the atoms, and may be expected to have the lowest one-electron en- 
ergy.   At the other extreme, the function for m « 3 will have a node between each pair of 
atoms, and so may be expected to have Ihe highest energy.   This state for m • 3 may be con- 
sidered to have three nodal planes, making angles of 30°,  90°,  and 150   with the x axis.   The 
states for m *  1, as we see from Eq. (3. 3), may be considered to have one nodal plane.   It 
Is convenient, for consideration of these nodes, to use the real and Imaginary psrts •~f (3. 3), 
or the functions which diagonaiize the reflections, since the functions which diagonaiize the 
i otutiout are complex, and do r ji na»» nodal p'.'-nes.   Then w* see that the real part of (3. 3); 

which ii. symmetric In y,  haa the y yla; c as a nodal plane, and the imaginary part has the x? 
plane as a nodal p'ane.   In a similar way, the states foi m  •--   t 2, from Eq. (3.4), have two 
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nodal planes.    Thus the real part of (3. 4) may ae considered to have the 45    planes x  = t y as 

nodal planes,   and the imaginary part has Ihe xy and xz plane;; as nodal planes.    We expect, 

then,   tha* ~z the energy will ir.crea=° •.v<,h the nu.T.bcr cf "xxizl plar.cs,  the ctatcs for m  =   1 

will have the next lowest energy,  and those with m  = 2 will have the next highest energy. 

In addition to the symmetry orbitals formed from the carbon Is atomic orbitals,   we 

have several other sets which behave .ust like these in the matter of symmetry.    Obviously 

the carbon 2s orbitals will behave the same way,  ami so will ihe ujrurogcu Is's.    As far as the 

carbon 2p's are concerned,  we must first consider how to remove the degeneracy of the atomic 

functions.    We have not so far discussed the symmetry of the molecule arising from reflection 

in the plane of the molecule, or the xy plane,  but we convince ourselves easily that this reflec- 

tion commutes with all other symmetry operations,   so that it will be diagonalized.    In other 

words,  all symmetry or molecular orbitals will be either even or odd on reflection in this 

plane, and as with the earlier cases,  we call the even orbitals <r orbitals,  and the odd ones 

v orbitals.    Clearly, then,  we wish to set up carbon 2p orbitals which are either of the o* type 

or « type, and the 2p   will be of the « type.   The six 2p   orbitals on the six carbons have the 

same symmetry properties,  as far as all the operations except   reflection in the plane of the 

molecule are concerned,  as th«» Is orbitals,  so that we shall make up our symmetry orbitrds 

from these in just the way we have already described.    We are then left with two a-type or- 

bitals arising from the 2p electrons of each carbon.    We naturally choose one of these with a 

nodal plane passing through the z axis,  so that its wave function will change from  - to •  as 

the angle increases,  and we may well call it a p .-type orbital}  and we choose the other with a 

nodal plane tangent to a cylinder passing through the nucleus,  so that its wave function will 

change from - to + as the radius increases,  and we may call it a p -type orbital.   The p - 

type has the same symmetry properties as the Is,  so that the discussion which we have al- 

ready given applies to it.    The p  -type is different,  however,  so that we must give it a special 

discussion. 

With the atomic p, orbitals, there is no reason why we cannot use the method given in 

Eq. (3. 1) cf setting up symmetry orbitals,  just as for the s orbitals.   The only point which 

might be different from the s orbitals comes when we examine ti;e behavior under reflection 

in the xz plane.   Thus the wave functions for m  = 0 and m = 3 are ww antisymmetric in re- 

flection in the xz plane,  rather than symmetric as with the s   >->rbltalt«.   The reason is the 
i ' 

nodal plane of the p , orbital.    On reflection in the xz plane, the p, functions on atoms 3 and 
• "9 

6,  which lie on the x axis,   transform into the negatives of themselves.    The function on atom 
1 transforms into the negative of lhat on 5,  and that on 2 transforms into the negative nf that 

on 4.   Hence we se» the antisymmetry of the functions for m =• 0 and 3 on reflection in the xz 

plane.   By similar arguments,  we can show that the function for m = 0 is antisymmetric on 

reflection in the yz plane,  and that for m  = i is symmetric.   Using Eqs.  (3. 3) and (3.4),  we 

can show *hat here,  as with the s orbitals, the function? Tor m  • i 1,  t 2 can be written at 

sums of symmetric and antisymmetric functions on reflection in the xz plane. 
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We have concluded earlier that for the symmetry orbitals formed fron. ^-likr atomic 

orhitals, the states of lowest energy will be those with m  = 0,   with the energy increasing as 

m  increase?,    Just the opposite,   however,   is the case with the p   -like orbitals.    Thus for 

m  « 0    we have a nodal plane in the form of a plane passing through the  z  axis,   and through 

the nucleus of each atom;  these nodal planes arise from the nodes present in the p   orbitals 
v 

themselves.    But in addition,   we must have a nodal plane midway between these other planes, 

for the wave function changes from   i   to   -   as we go trum cne atom to the next,   on account of 

the nature of the p. orbitals.    For m  =  3,  on the contrary,   where the pA orbitals have opposHe 
9 9 

signs on adjacent atoms,  the orbitals of adjacent atoms add rather than subtracting at the 

point midway between atoms,  and there are no extra nodal planes between atoms.    Examina- 

tion of the cases m  = i l,  t i shows that these fall between the limiting cases m = 0 and 3. 

In other words, for p.-type orbitals, the symmetry orbital with fewest nodes,  and with charge 

concentrated in the region between atoms,  comes for maximum m,  and we hence expect this 

to have the lowest energy}  wr.uc the orbital with most nodes, located between atoms,  which 

would be expected to have maximum energy, is that for rr.   - 0. 

We have now explored the types of symmetry orbitals which we can set up,  and next we 

shall look at the. extent to which the secular equation is factored on account of symmetry.   In 

the first place,  if •»• rtingonali*e the rotations,  we can see at once that there can be no non- 

diagonal matrix components of energy between states of efferent m.    Furthermore, on ac- 

count of the diagonallzatlon of the reflection lit the plane of the molecule,  there is no non- 

• liagonal matrix component of energy between a <r and a w orbilal.   Thus in particular the 

.symmetry orbitals formed from * electrons,  corresponding to given m values,  will be mo- 

lecular orhitals, .as far as our approximations extend.   But we have five o~-type symmetry 

orbitals of each m vaiue,  corresponding tu the hydrogen Is orbital,  the oxygen Is,  2s,  2p , 

and 2p..   Hence In general we may expect to have to solve a fifth degree secular equation be- 

tween these,  for each m value, unless there are additional symmetry features.    For m = 0 

and m « 3, there are such features:   we have seen that in that case, the Is,  2s, and 2p   sym- 

metry orbitals are symmetric on reflection in the xz plane,  while the 2D . symmetry orbitals 

are antisymmetric on reflection.   Thus for m = 0 and m = 3, the secular equation factors, 

one factor representing the 2p.-type symmetry orDltai,  which itself forms a molecular or- 

bital,  and the other factor yielding a fourth degree secular eauatlon between the symmetry 

orbitals arising from the hydrogen Is, oxygen Is,  2s,  and 2p .    For in = t I,  * 2,  however, 

ihis factorization does not occur; the 2p   orbital gets mixed up with the others,    in each case, 

cf course, it m«y bs legitimate,  as in earlier cases,  to assume that the oxygen Is symmetry 

orbital forms approximately a molecular orbital by itself, wlthcut mixing up with the others. 

If this can be done,  we are left with a cubic equation for m •   C,  3,  and a fourth degree equa- 

tion for the other values of m. 

We may now make a guess as to the general nature of the one-electron energies. 

From the oxygen Is orbitals,  we shall have six molecular orbitals,  a'l being very tightly 
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bound,  v/ith small en ry separation between the different m values.    We shall expect m  =  0 

to lie lowest, m - 3 highest.    Then from the o" orbit&ls of the carbons and hydrogens,  we 

expect four groups of six orbitals,  not very widely separated in energy.    Let us first consider 

how these groups are likely to behpv* for m = 0,  in which the orbital repeats periodically on 

each CH group-    For m  = 0,  we remember that the three orbitals formed from the carbon 2s, 

the hydrogen Is,  and the carbon 2p ,  do not combine with that formed from the carbon 2p+. 

We consider first,  then,  the three combinations of the 2s,   is,  and 2p .   From our experience 

with the CO, case,  we may expect that the lewest energy will be associated with a combina- 

tion in which there are no nodes, except the nodes near the carbon nucleus coming from the 

Inner node of the carbon 2s.   There will be a maximum overlapping of charge between the car- 

hon an* hydrogen,  and It Is these orbitals which  will be largely responsible for the binding 

between carbon and nydrogen.   Such a combination will be made up of the carbon 2s and hydro- 

gen Is with the same sign, and a considerable contribution of the carbon 2p   of such a sign as 

to reinforce the other wave functions in the region between carbon and hydrogen, and hence of 

such a sign as to tend to cancel the carbon 2s on the side away from the hydrogen, or toward 

the center of the benzene ring.   In other words, the carbon 2s and 2p   will combine In such a 

way as to give a maximum overlapping with the hydrogen Is.   This combination of orbitals on 

one CII group will now have its maximum intensity between the C and H, so that It will not be 

large between adjacent CH groups.   Under these circumstances, we may expect that for the 

different m values, we have molecular orbitals arising from this combination of is, 2s, and 

2p , made up very much as indicated in Eq. (3.1), only now with this particular combination 

of hydrogen Is and carbon 2s and 2p   in place of the s, app'   ~--<g in that equation.   Since the 

orbitals are not large in the region between carbons, we may expert that the energies of these 

orbitals will not depend greatly on m, though the sr.cigy will increase with m, since there Is 

some slight tendency . iward carbon-carbon bonding In these orbitals for the low'm'a, where 

the wave functions from adjacent CH groups add between the carbons,  and a corresponding 

tendency against bonding for the high m's, where there are nodes between the carbons. 

The orbitals we have beer, speaking of resemble the symmetric orbitals in the H, prob- 

lem.   At the opposite extreme are those resembling the antisymmetric orbitals in that prob- 

lem.   We may expect that the highest energy for m = 0 will correspond to a combination of 

hydrogen Is,  carbon 2s and 2p , which has a node between the hydrogen and carbon.    We 

should expect it to be made up from the same type of combination of carbon 2s and 2p   as be- 

fore, but combined with the hydrogen Is with opposite sign.   By analogy with the C02 problem 

which we have already discussed, we should expect that the coefficients of the functions would 

be so arranged that this wave function had three nodes, in addition to those near the carbon 

nucleus, since it corresponds to the highest energy of the three.    For <H'f«rent m values, 

again, we should expect a set of orbitals with energy Increasing with m,  and probably again 

not varying greatly with in,  since these functions do not correspond to large concentration of 

charge betw£?n the ce; boi.-- 
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Intermediate between the*--" two types of orbit a) a,   we mu«i have a third one f >r m  » 0 

which Hoes nol correspond to any such large concentration 01 charge between the carbon and 

itjdrcgen as in :he first cas»:,   and is more like a carbon 2s wave function alone,   with ju>t 

enough admix:ure of the carbon 2p    and hydrogen Is to give it one node.    We should expert the 

cnartfe distribution in mis oronai to overiap those from neighboring carbons somewhat more 

than in the other two cases,  so that the energy will increase rather more rsoidly with m than 

for the other two types of orbitals. 

We cannot consider this third type of orbital properly wit: out also taking into account 

the orbitals made from the carbon 2p   orbitals.    We have already seen that for m = 0 and 

m =  2 the symmetry orbitals made from these 2p   atomic orbitals according to the prescrip- 

tion of Eq.  (3. 1) will be molecular orbitals,   without any mixture of other atomic orbitals.  and 

that the lowest energy will come for m  =  3, for which we have a large charge concentration 

between the carbons,  while the highest energy will come for m = 0, for which we have nodes 

between the carbons.    We conclude,  then,  that these orbitals are largely instrumental in the 

binding between carbons.    We could attempt to plot the energy of these various types of or- 

bitals, as a function of m, by drawing continuous curves, even though really the energy is 

defined only for the discrete values m = 0,  t 1,   t Z,   3.    We shall see later that a simple 

symmetry orbital like that of Eq. (3. 1) has a cosine-like curve giving energy as a function of 

m.   If v.< draw such a curve for these orbitals coming from the atomic 2p.'s,  our curve would 

have a maximum for m • 0, minimum for m  = 3, while for the orbitals coming from the car- 

bon 2s at»d 2p , and hydrogen Is, the minimum will come at m = 0, maximum at m = 3.   It 

now seems very plausible that the energy curves,  as drawn in this way, for the middle one of 

the thrse types of orbital formed from the carbon 2s and 2p   and hydrogen Is,  will cress the 

curve formed from the carbon 2p$, In approximately the center of the range, that is, between 

m «  1 and 2. 

We have spoken as if there were continuous curves connecting these various energies, 

as functions of m.   But we mt*st remember that for m « t 1, t 2, the atomic orbitals 2p . 

combine with the 2s,  2p„,  and hydrogen Is: there is no symmetry property which states that 

they must be non-combining.   If we really had solved a cubic secular equation for giving the 

best combinations of 2s,  2p   and hydrogen Is,  for each m value,  so as to give us an energy 

curve as a function of m for each of these three states,  and had separately computed the en- 

ergy of the symmetry orbital formed from the carbon 2p 's for each m value,  we should then 

find that there would be non-diagonal matrix components of energy between these states, for 

m • t l, t 2, though not for m = 0,   3.   If two of the curves crossed between m* =  i and 2, as 

we have postulated,  when we neglect this interaction, our general knowledge of perturbation 

theory tells us that the interaction will push the two energy levels apart,  and will give us new 

curves connecting the two lower branches of the Interacting curves, and connecting the two 

upper branches.    This presumably happens in our present case.   Thus wc may expect to have 

a lower »••?. of orbitals,  consisting for m  = 0 of mostly i ^-vrbon 2s-llke orbital,  for si « 3 cf 
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a carbon 2p  -like orbital,   with intermediate combinations between,  but in each case having 

considerable chai ge concentration between the carbons:  and an upper set,  consisting for m   = 

0 of the caibon 2p  -like orbitals,  for m  =  3 of the combinations of hydrogen Is,   carbon 2s, 

and carbon 2p ,  but in each case with a node between adjacent carbons.    The orbitals of the 

lower set,  in other words, tend to bond the carbons together,  and of the upper set to make 

them repel. 

We have now fi.iished our catalog of the probable types of a--orbitals for the benzene 

molecule.    We have five types:   the lowest type is almost exactly the carbon Is,  the next cor- 

responds to charge concentration or bonding between each carbon and its adjacent hydrogen, 

the next to charge concentration or bonding between adjacent pairs of carbons,  next to nodes 

or antlbonding between adjacent carbons,  and highest to nodes or antlbondlng between carbons 

and hydrogens.    There is good chemical evidence that six out of the seven electrons In each 

CH group are actually located in o* orbitals.    Thus we expect that the three lowest sets of six 

orbitals, in the catalog we have just given,  are each occupied by two electrons,  one of ?pch 

spin, leaving the t«re higher sets of orbitals,  corresponding to antlbonding between carbon and 

carbon and between  arbon and hydrogen,  unoccupied.   It is unfortunate that,  in spite of all the 

work that has been done on benzene during twenty years,  the straight-forward calculation of 

these viype molecular orbitals,  and their one-electron energies,  has not been made,  and we 

are forced to rely on guesswork as to the probable nature of the er.crgy values-    Almost all t 

the work on benzene has been concentrated on the w-electrons,  which have Interested the 

chemists on account of the way in which they led to an understanding of the relations between 

•ingle and double bonds,  but which are r.ot inherently more important in understanding the 

problem that the ©-orbitals which have been so widely disregarded. 

The problem of the ir-electrona,  which remains to be considered,  is almost a trivial 

one compared to that of the ©--electrons,  since we do not have any secular prociem associated 

with them.    The symmetry orbitals constructed from »he atomic 2p   orbitals according to 

Eq. (3. 1) are the best representations which we h»vc,  consistent with our approximation 

scheme, for the corresponding molecular orbitals.   The energy of the orbital for m  = 0 will 

be lowest, ?h&t for m « 3 will be highest.    The chemical evidence Indicates that one electron 

per CH group in located in the w-orbitals,  and hence we must conclude that the three lower 

orbltsls, for m  = 0,  t i,  are each filled with one electron of each spin,  and th» three upper 

onec. for m  = i 2,   3,  are empty.    This implies that the w energy levels for m  = 0,  t l lie 

lower than the antlbonding types of ©--electron orbitals which are unoccupied in the molecule, 

but that on the other hand the v lev?!« for met*.   3,  lie above any of the bonding types of 

tr-electrons which are occupied.    This seems plausible,  and if true it would lead to a complete 

description cf the ir.circulsr orbiteis e? the benzene molecule,  and their energy levels. 

In our summary of tvork by the molecular orbital met tod,  we have mentioned that 
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there has been a great deal oi work on conjugated systems,  chain-like planar structures com- 

posed of CH groups as in benzene,   each group having six electrons in <r orbltals <?.r.d D»:e in a 

w-orbital     In many of these cases,  there is a definite tendency tc alternation which is not 

present in benzene:   one bond definitely seems to be a single bond,  the next one a double bond, 

and so on.    Also Ihere has been much work on substituted benzenes,   in which a different atom 

is substituted fee one or more of the hydrogens.    Such problems are strikingly like those met 

in crystals;  it must have been obvious tha* our treatment of the benzene molecule resembled 

that of a one-dimensional crystal with a periodicity of six atoms.    The substituted benzenes, 

for instance, are very like crystals containing impurity atoms.    Since we shall make a care- 

ful study of such problems when we come to the study of solids,  it seems b«st to postpone 

these problems in molecular structure until we come to the similar problems in solids.    We 

shall accordingly go ahead with a few other simple molecules at this point, to illustrate some 

features more typical of molecular than of solid-state structure.   As a next illustration,  we 

lake the ammonia molecule,  the first example we have taken up of a non-planar molecule. 

The ammonia molecule, NH,,  consists of an equilateral triangle of hydrogen atoms, 

with a nitrogen atom on the line perpendicular to the plane of the hydrogens and passing 

through the center of the triangle,  but some distance out of the plane of the hydrogens.   In 

either words,  the molecule forms a pyramid,  with the nitrogen at the apex.    Let us take the 

hydrogens to be in the xy plane,  with one hydrogen on the x axis, and the origin at the center 

of the triangle, and let us take the nitrogen to be at a point on the positive z axis.    Then the 

symmetry operations are very simple-   They consist of rotations through 120   or any mul- 

tiple of it about the z axis, and reflections in planes passing through the z axis,  and making 

«»ngles which are multiples of 60° with the xz plane.   As in the case of benzene,  we can see 

that these rotations do not commute with the reflections, but that we can generate all the sym- 

metry operations from the rotations,  and from reflection in the xz plane.   Since the molecule 

is not planar, there is no symmetry operation connected with reflection in the xy place. 

If we diagona'ize the rotations, then we see,  by analogy with the case of benzena, that 

rotation through 1.0   must multiply the wave function by one of the cube roots of unity,  or by 

e      m'  ,  where m  = 0,  t 1.    We see also that the two states with m » t 1 will be degenerate 

with each other, but not with the state m  = 0.    We must now construct symmetry orbltals out 

of the atomic orbltals of the nitrogen and hydrogens.    First w# consider how to do this with 

the hydrogen Is orbltals.   By analogy with Eq. (3. 1),  Section 5,  we must merely make up the 

combinations £ (j) e w m''    s,,  where s1 represents the hydrogen orbital on atom j,   i * 1 

cerr-spondl.tg to that at an angle 120° to the x axis,  and so on.   Thus for m * 0 the correct 

symmetry orbital ts merely the sum of the hydrogen orbltals on ail three atoms.    From m = 

t i,  the symmetry orbltals are 

s3 - i(8l + s2) t 0.8661^ -s2). (3.5) 
2 

It is obvious that if we choose to diagonalize the reflecttor In the xz pku-.e,   rattier than the 
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rotation,  then we should have chosen the two combinations s, - l/2(s. • =2) and 0.866 (s.   - 

s.) as oi"- two cymme»ry r,rh',,.,s.   *"e firsi bping symmetric,   the second antisyrometric,   in 

reflection in the xz plane.    Here again,   as with benzene,   it ic lntsircrting to see that these two 

symmetry orbitals.  though quite different in appearance,   must be degenerate with each other. 

Ti'ext wc examiri.' the way to make symmetry orbitals out of the nhrogen atomic or- 

bitals.    The method is obvious:   we merely need set up the ordinary atomic orbitAls,   in which 

the component of angular momemum along the  z  axis is quantized.    The nitrogen Is,   2s,   ind 

the component of 2p corresponding to m  = 0,   are unchanged on rotation through any angle 

sbout the z axis,   and hence in particular are unchanged on rotation through 120  ,   so that they 

have the same symmetry as our other orbitals corresponding to m  =  0.    Similarly,   the r.i- 

trogen 2p corresponding to m  = t 1 have the factor e in their wave functions,  so that they 

are multiplied by the factor e * '    when we rotate through 120°,  or 2w/3.    Thus they already 

have the proper form for symmetry orbitals.    If we had chosen to diagonalize the reflection 

In the xz plane,  we should merely have used the nitrogen 2p ,  2p , 2p   orbitals,  of which the x       y       z 
first and third are symmetric,  the second antisymmetric,  in this reflection. 

We now have considered all the types of symmetry orbitals,  and are ready to consider 

the nature of the secular problem leading to the molecular orbitals.    For the orbitals with 

m  =  0.   we have combinations of the nitrogen Is,  2s,  and 2p ,  and of the combination of the 

hydrogen orbitals corresponding to m = 0.   Thus we shall have a fourth degree secular equa- 

tion,  which will reduce to a third degree equation If we assume that one solution is approxi- 

mately the is orbital.    Of the three remaining solutions,  we may suppose that the lowest one 

corresponds to a bonding orbital between the nitrogen and the hydrogens.    This would cor- 

respond to a combination of the nitrogen 2s and 2p   of such a type that these would reinforce 

each other In the region between nitrogen and hydrogens,  plus a contribution from the hydro- 

gen m  = 0 orbital, such that we should have a concentration of charge between the nitrogen 

and hydrogens.   The second of these remaining solutions would presumably correspond to a 

concentration of charge largely on the nitrogen atom,  with more charge on the side away from 

the hydrogens than toward them,  and the third and highest would be a definitely antibonding 

combination with a node between the nitrogen and the hydrogei.s,    For m =  1,  we shall have 

two combinations of the nitrogen orbital 2p   and the corresponding hydrogen symmetry orbital, 

one combination being a bonding one,  with concentration of charge between nitrogen and hy- 

drogens, and the other being antibonding,  with a node between.    The same thing will be true 

lor m •  - 1. 

In the ammonia molecule,  we have ten electrons.    Two will be In the ls-llke orbital, 

two in the bonding m  = 0 orbital, two each in the bonding m  = t 1 orbitals,  and thi> remain- 

ing two in the m * 0 orbital concentrated largely on the nitrogen,  in the direction* away from 

the hydrogens.    These two are lone-pair electrons,  in the sense of Lennard-Jones,  as we saw 

that there were four lone-pair electrons In the w.iter molecule.    They are the electrons that 

tend to attract an additional proton,  forming th* ammonuim ion (NH4)',   which has the Same 
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tetrahedral structure as methane,   which we shall discuss next.    Finally,  th*> -r;:.-bonding or- 

bltals are empty. 

An interesting question connected *ith the ammonia molecule is why it is not planar. 

To answer this question properly,   we should have to calculate the energy as a function of the 

distance of the nitrogen from the plane of the hydrogens,   allowing the triangle of hydrogens 

to adjust itself,  for each position of the nitrogen,  to a size correct to give minimum ene.gy. 

Then we should have to find the total electronic energy of the molecule as a function of nitro- 

gen position,  and see where the minimum came.    The expei imental situation in well known: 

there are two rather shallow minima of energy,  one with the nitrogen on each ride of the 

plane of the hydrogens,  with a maximum of energy when the nitrogen is in the plane.    On the 

other hand,  this energy maximum in the plane is not very high above the minima,  so that the 

tendency away from planar configuration is not very strong.    Though we cannot predict this 

situation from our qualitative discussion of molecular orbitals,  at least we can easily «ee the 

features which will go into the calculation. 

In the first place, there is naturally a repulsion between the hydrogen atoms and the 

inner K shell of the nitrogen,  which will tend to keep the hydrogens at some distance from 

the nitrogen.    This repulsion would come in, in our picture,  If the nitrogen-hydrogen distance 

were small enough so that the nitrogen Is and hydrogen Is wave functions were appreciably 

mixed In any of the molecular orbiials.   It would tend to hinder the nitrogen from squeezing 

through the center of the hydrogen triangle.    More important, however,  would he the effect 

on the nitrogen-hydrogen bonds o' a •iisp'acfment of the nitrogen.   With the non-planar ar- 

rangement,  we have seen that the bonding orbitals of m  = 0 type will be a combination of ni- 

trogen 2s,  2p , and the hydrogen orbitals.    If we" had a planar molecule,  the 2p   would be- 

come a w electron, forbidden by symmetry to combine with the 2s and the hydrogen orbitals, 

and this would presumably decrease the strength of the nitrogen-hydrogen binding.    Tht? Is 

probably the main effect tending to favor the non-planar configuration.   It is partly counter- 

balanced,  however, by an effect met with the m = t 1 orbitals.    These,  as we have seen,  are 

made out of hydrogen orbitals,   and nitrogen 2p orbitals with m  = t 1.    These nitrogen or- 

bitals have maximum values In the plane perpendicular to the z axis,  and hence if the mole- 

cule had a planar configuration, they would have a maximum overlap with the hydrogen or- 

bitals,  and a maximum binding effect.    This will Le somewhat weakened in the non-planar 

configuration,  and we must assume that this weakening is not enough to counteract the 

s rengthening of the binding coming from the m = 0 orbiials.    From this rather complicated 

interplay,  we see that it would be dangerous to go too far in making qualitative predictions, 

without quantitative calculations of the actual energy levels as a function of nuclear positions. 

Such quantitative calculations do not seem to nave oeen made. 

7   The Methane Molecule 

The meths.ne molecule, CH4>  has a tetrahedral structure,  with the carbon in th.? 
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Fig.   5 

center.    This molecule is most conveniently shown as   n the 

diagram of Fig. 5,  where the carbon is at the origin,  and the 

hydrogens occupy four of the eight corners of a cube.    Thus if 

the sides of the cube are two units tn length,  the carbon which 

we httve denoted (i) has the coordinates (1,   1,   1};   that which 

we have denoted (2) has coordinates (I,   - 1,   - 1)»   (3) has (- 1. 

1,   - 1):  and (4) has (- 1. - i.   1) .    We see that there are many 

symmetry operations which transform the molecule into itself. 

Thus in the first place,  we can rotate through .80   about the 

x, y,  or z axes.    These two-fold axes of rotation are those 

drawn from the carbon out to the centers of the lines joining 

the pairs of hydrogens.   Associated with these two-fold rota- 

tions there are of course certain reflections.   Thus we can reflect in a plane passing through 

the x axis and through the two itoms (1) and (2)j or in a plane passing through the x axis and 

perpendicular to this.   From what we have already seen, successive reflection in these two 

planes are equivalent to the rotation.   In regard to our three two-fold axes of rotation, the 

first thing to notice is that these three rotations commute with each other,  so that they can nil 

be simultaneously diagonalized, and this is the method of diagonalizatlon which we shall pre- 

fer.   Thus rotation through 180° <*bout the x axis transforms the coordinates (x, y,  z) into 

(x,  - y,  - z).   Rotation through 180° about the y axis transforms (x, y,  z) into (• x, y,   - z). 

Successive application of these two rotations, in either order, transforms (x, y, z} into (- x, 

- y,  z), so that they commute} furthermore, it is clear that the successive application of the.'ie 

rotations is equivalent to rotation of 180° about the s axis. 

In addition to these three two-fold axes of rotation, there are four three-fold axes, in- 

dicated by 1, 2,  3, 4 in Fig. 5.   By a three-fold axis, we mean that rotation through 2w/3, or 

120 , brings the molecule back into coincidence with itself.   Thus these axes point out from 

the carbon to the four hydrogens, and rotation through 120° ab^at axis 1 shifts hydrogen 2* to 

position 3,  3 to position 4,  and 4 to position 2.   These three -fold rotations do not commute 

•with each other, or with the two-fold rotations.   This statement is a special case of the gen- 

eral theorem that two rotations around different axes do not commute with each other provided 

the angle between axes is different from 90°; and even if tne angle is 90°, they commute oruy 

if the rotations are through angles of 180°.    Let us examine the reason for this general theo- 

rem.   In the firat place,  we can easily convince ourselves that it can only be in very special 

cases that rotations about different tx?» should commute.    We can, for Instance, write one 

notation as a linear transformation of the coordinates x, y,  z to new coordinates x', y\  z\ 

the coefficients of the transformation satisfying the orthogonality conditions;  similarly the 

second rotation is written as another linear transformation from x1, y',  z1 to x", y",  z". 

Then we can express the coefficients of the combined transformation from x, y,  z to x", y", 

z" In terms of the separate coefficients,  and we find that there is nothing inherent in the prob- 

•    i 
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lem which leads to the result being the same independent o! the order of the rotations. 

For rotations about axes at right anglei to each other,   Uwwever,   we have a special 

case,   which we nay examine separately.    Thus let us choose the '.wo »es »s the  x and y 

axes.    Let the first rotation be around the x axi«.   tbo»gh a"> p.r.gle 6.    Then we have x'   = x, 

y'   = y cos 6 +•  z sin 0,  *'   »  - y sin 0 +  z cos 8.    Similarly let the .'second rotation be around 

the y axis,  by an angle + .   Then x"  = x' cos • - z' sin$, y" = y',  z"  = x' sin + • z' cos •. 

When we combine these expressions,  we have 

x"  = x cos <$» + y sin 8 sin  $ -  z cos 0 sin • 

y"  « y cos 8 + z sin 8 (3.6) 

z"  = x sin • - y sin 0 cos • • z cos 8 cos • 

Now we may perform the operations in the opposite order. Thus we have x' = x cos $ - z 

sin $, y' = y, z' « x sin • t z cos $, and x" = x', y" « y' cos 0 + z1 sin 0, z"' * - y' sin 

6 •*• z' cos 9.   Combining these expressions,  we have 

x"   « x cos $ - z sin $ 

y" = x sin 0 sin • • y cos 0 + z sin 0 cos 4> (3. 7) 

z" = x cos 0 sin $ - y sin 8 +  2 cos 8 cos $. 

U the two rotations are to commute with each other, this means that Eq. (3. 7) must be iden- 

tical with (3.6).   For this to happen,  excluding the trivial case of 0 = 0,   • = 0,  we must have 

sin 0=0,  sin $ « 0,  which means 8 c »,   $ = r (since the possibilities 0 are excluded).   In 

other words   we have proved our result that two rotations about axes at right angles to each 

other commute only if each rotation is through 180 .   In this case,  our final expressions are 

x" *  - x, y" - - y,  z"  = z, equivalent to a rotation of 180° about the z axis. 

There is an interesting application of this fact, that two rotations about axes at right 

angles to each other do not commute if the angles of rotation are anything but 180°.   This re- 

lates to the non-commuting nature of the angular momentum operators corresponding to x, y, 

and z componcnte of angular momentum,  discussed Tor instance in QTM. pp. 479-485.    We 

can show by elementary methods that the operator associated with the : component of angular 

momentum is (h/2vl)(8/9 6), where  4> is the angle of rotation about the z axis,  in polar co- 

ordtnates.    That Is,  If the wave function is u(r,  0, +),  if the operator s» M -  and u we write 
. I 

the derivative   as the limit of the difference,  we have 

! I 
Mu.1^0 u(r. 8.»+6») - u(r, »,•) § j j 

z 2wi 6+ ! 

If we assume that this is approximately correct for a small but flr'te 54>.  we may then ap- 

proximately wri«e : 
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(1 • ill 6«>MJ u(r. e. *) = u(r. 6, * fr {$) . 
n *- 

In ether words,  the operator on th* left,   a linear function ol M ,   is one which transforms the 

function u(r,  6, 4) by rotating through an angle 64> around the z axis.    Similarly an equivalent 

operator made from M   transforms by rotation around the x axis,  and similarly for the y 

axis.   Since we have just found that rotations around the x, y, and z axes do not commute un- 

less they are through angles of 180 , we see that the fact that M .  M , and M, do not com- 

mute Is directly tied up with our present results. 

Returning to the problem of methane, we see that our commuting rotations around two 

perpendicular axes are of the form which we have already found for the three two-fold axes 

In our problem, and that these repics--nt the only type of commu.lng rotations around different 

rotation axes which can exist.   Thus we prove our statement that rotations around the four 

three-fold axes do not commute with each other, or with the two-fold rotations.   Under the 

circumstances, then, the best thing we can do Is simultaneously to dlagonallze the rotations 

around the two-fold ax> s, leaving the three-fold rotations with non-diagonal matrices.   We 

must obviously have degeneracy in the problem, and we shall see just what sort when we set 

up our symmetry orbltals. 

We wish to make up symmetry orbltals out of the four hydrogen Is orbltals, and out 

of the carbon atomic functions.   It Is at once obvious how to do this with the carbon functions. 

The carbon Is and 2s functions are already proper symmetry orbltals:   they are unchanged 

under any one of the rotations.   In addition to ihese, we can choose the carbon 2p , 2p , and 
o 2p   orbltals.    Jnder the rotation of 180   around the x axis,  2p   is symmetric and 2p   and z x y 

2p   antisymmetric, so that each of these is dlagonallzed for these rotations.   On the other 

hand, If we had preferred to dlagonallze one of the three-fold rotations, say around the axis 

pointing to atom (1), we should have chosen the carbon 2p wave functions having their com- 

po:.»nts of angular momentum around this axis quantized.   The problem then would be set up 

by analogy with the ammonia problem, showing the same three -fo'd rotational behavior, with 

the molecular orbltalr characterized by quantum numbers m, which could equal 0, t 1, with 

the two states t 1 degenerate with each other. 

We can now very easi > set up the four combinations of the four hydrogen Is functions 

which are symmetry orbltals for the two-fold rotations.   If we symbolize the hydrogen func- 

tions by s ,  s-,,  Sj,  s., the hydrogens being numbered as in Fig. 5, then we have one com- 

bination s. + s, t s, + >, which Is unchanged under any of the rotations} this particular func- 

tion, then, acts like the carbon s states as far as our symmetry operations are concerned. 

This particular function Is obviously unchanged as well under a rotation around one of the 

three-fold axes.   In addition to thi=» fuictlon.  we have three combinations which hove the sym- 

metry of the carbon zp     2p . and 2p   functions respectively.    Thus the combination s. t x       jr z i 
«2 - s, - s4 is unchanged on rotation through 180   about the x axis, but changes sign on ro- 

tation about the y or x axes. just as 2p   doe*.   Similarly the combination s    - g. *• s    - s4 
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acts like 2p .  and s. - s, - &, • s. acta like 2p .    These four combinations form the sym- 

metry orbit mis of the problem. 

Before we use these symmetry orbital", let us see how 'hey behave under the three- 

fold rotation-, to check thn fact that each one transforms into a combination of the others. 

Let us consider the rotation about the sxis 1, in wr.'ch x is rot.:*.- i..:o y, y U.to z,  z into x. 

That is,  if we start with a molecular orbital u(x, y,  z), we transform to u(y,  z, x).    Ob- 

viously one of the s atomic orbitals of the carbon will transform into Itself.    The 2p   orbital, 

however, whose wave functions is x i'(r),  where r is the radius, will transform into y f(r), 

which equals 2p.  and similarly 2p   will transform into 2p_,  2p   into 2p.   To see how the y y z        z x 
hydrogen orbitals transform, let us first examine the transformation properties of the func- 
tions s., s,. 9,. s^.    These are functions of the distance from the respective hydrogen nuclei. 

The nuclei have coordinates given respectively by (a, a, 0). (a, -a, -a),  (-a, a, -a), (-a, -a, a), 

if a is the half-side of the cube in Fig. S.   Thus s.(x, y,  z) is a function F ^(x - a)    •   (y - 
2 i\ 1/2 *• a)    • (z - a)  >  '   ,    When we make the transformation (x, y,  z) •* (y,  z, x), this obviously 

transforms into itself.   Similarly s.(x. y.  i\   *  F j(x - a)2 •• (y • a)2 • (z + a)2}1'2,  which 

transforms into F|(x • a)   • (y - a)2 + (z • a)2]1'2,  which equals s3(x. y,  z),  and s3 trans- 
forms into s.,  s. into s,.    Thus we see that under this rotation, the function s. + s, + s, + 

s. transforms into itself, the function s. + s, - s,  • s   transforms into s. - s, + 5, - s.,  or 

the p -like combination of hydrogen orbitals transforms into the p -like,  and so on with the 
y 

others.   In other words, we see how our three-fold rotation axis ties In with the three-fold 

degeneracy of the symmetry orbitals. and we see that the combinations of hydrogen orbitals 

which we have made transform as they should,  and as the carbon atomic orbitals do, under 

the three-fold as well as the two-fold rotations. 

Let us now see how these symmetry orbitals combine Into molecular orbitals.    We 

have'three orbitals of s-llke symmetry;   the carbon Is, 2s, and the s-like combination of 

the four hydrogen orbitals.   Of the three combinations of these, one will be very nearly the 

carbon Is,  a second will be a combination of the carbon 2s and the hydrogen orbitals having 

a maximum between carbon and hydrogens,  and hence of bonding character,   and the one of 

highest energy will be an antlbondlng combination of carbon 2s and hydrogen orbitals,  with a 

nodal surface (roughly a sphere) between the carbon and the hydrogens.    There are two or- 

bital? of p -like symmetry,  the carbon 2p ,  and the combination of hydrogen orbitals of this 

same symmetry.    Here we shall have a bonding combination of carbon and hydrogen orbitals, 

with a maximum between the atoms,  and an antlfconduig orbital of higher energy,  with a nodal 

surface between -«rbon and hydrogens.   The methane molecule now has ten electrons, just 

like the neon atom, and these are just enough to fill the Is-like orbital, the bonding s-like 

combination of carbon and hydrogen,   anJ the bonding p -like,  p ,-like,  and p  -like combina- 

tions of carbon and hydrogen, leaving ihe antlbondlng orbitals empty.    As -ve look at ;i.»se 

wave functions,  we see that the situation is strikingly like that found in the neon atom.    The 

antibom?Uig combinations of carbon and hydrogen orbit ils.   having an extra node roughly in th« 
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forra of a sphere, have very much the character of the 3=.  3p ,   3p .  and 3p   orb.tsis of an x       y z 
atom, and these are the orbitals whi-h are unoccupied In the ground state of the methane 
molecule. 

8. General Determination of Molecular Orbitals 

We have now examined enough types of molecules, and the symmetry relations of their 
molecular orbitals, so that the reader will be familiar with the general principles determin- 
ing iheae orbitals.   There are of course many other configurations which molecules can have, 
but lie. number of symmetry types is not unlimited, and we have taken up many, though not 
all* of the Important ones.   We shall now go on to tl"» other part of the problem, the setting 
up of the secular equation for determining the molecular orbitals.   We shall consider the case 
which we have been assuming in the preceding sections:   that in which we build up an approxi- 
mate molecular orbital as a linear combination of atomic orbitals. 

We start with a set of atomic orbitals, which we may call   \r   These functions, just 
like the ones we have been speak'"" of.  sr? atomic orbitalr. on various atoms, functions of 
the distance of the nucleus multiplied by a spherical harmonic of the angle.   From these 
atomic orbitals we construct symmetry orbitals, which we may call <)>., by the methods we 
have described.   These symmetry orbitals are linear combinations of the atomic orbitals:  we 
may write  t^ =  £(j) C.. \..   We have not so far said anything about the orthogonality of 
these symmetry orbitals.   The atomic orbitals are not orthogonal to each other; we may de- 
fine / Xi*Xj dv * S,,,   where S., « 1, the atomic orbitals being normalized, but where the 
non-diagonal components S,., i i j, represent overlap Integrals which do not vanish.   Two 
symmetry orbitals of different symmetry type are automatically orthogonal to each other, 
but two of the same type do not have to be.   It is. however, much more convenient to deal 
only with orthogonal orbitals, and for this reason it is generally convenient to set up the sym- 
metry orbitals so that they are orthogonal to each other.   This can be done in an infinite num- 
ber of ways, since if we have n symmetry orbitals of a given type,  any n orthogonal linear 
combinations of them will serve equally well as symmetry orbitals, and the final answer will 
not depend on how we orthogonallze them.   One standard procedure for orthogonalizing is to 
number the symmetry orbitals from 1 to n (say starting with the moat tightly bounJ), then use 
1 as one of the oi thogonamed orbitals, use a linear combination of 1 and 2 with coefficients 
chosen so as to make it orthogonal to 1 as a second, a linear combination of 1, 2, end 3 with 
coefficients chosen to make it orthogonal to the first two as the third, and so on.   We shall 
assume from now on that this orthogonallzatlon has been carried out, su that the functions «j». 
are crvhogonal and normalized. 

In the self-consistent field method, as we have outlined it, we have a one-electron 
potential V, and a one-electron narallionlan H.   We wish :J.cu to find the matrix components 
of tois Kamiltonian with respect to the symmetry orbital* >!<.; these matrix ^..-.nonents l*ad 
at once tc the e^cular equation which determines the molecular orbital.* and one-e» -ctron 

-117- 

;  i 



THE METHOD OF MOLECULAR ORBITALS 

energies.    On account of the fundamental properties of the symmetry orbitals,   there will be 
no non-diagonal matrix components between orbitals of different symmetry.    Between two or- 
bital*  • • and i|». of the same symmetry,   the matrix component will be 

JV H4- dv  =   I(km) ClR« CjlrJv HXin dv . (3. 8) 

Since we know the C's,  this at once allows us !o compute the desired matrix components from 
the components /xw* ^Xm dv of the one-electron energy with respect to the atomic orbitals. 
Let us next consider how to find these components. 

The operator H equals the kinetic energy operator,  plus the potential energy V of thr- 
self-consistent field.    We assume thet the x's are atomic orbitals,   which means that they are 
solutions of a self-consistent Held problem of some sort for an atom.    That is,  if V   Is the o 
potential energy of this central field,  and If H   Is an energy operator consisting of the kinetic 
energy plus V .  we have H  v_  = «^x~>  where «      Is the one-electron energy.    If the   x's "* o o ~m        m~m m •* 
are not actual solutions of an ordinary self-consistent field problem,  we still can set up a V 
and an H   such that this equation will be satisfied.    Then we clearly have Hx      = (H   + V - o mo 
VJ v„, = (t„ • V - Vjv    .    From this we then see that o   *m m o *m 

Ak* H*m dv = «mSkm * JV<V ' V*m dv • ^.9) 

Integral of the type appearing In Eq.  (3. 9). then,  are the ones which must be determined to 
get the matrix components of H. 

The potential V. by Its nature, behaves very much like an atomic potential around each 
atom of the molecule. It Is approximately like a sum of spherically symmetrical potentials, 
one located at each atom, ana near the atom on which x is located, It will be approximately 
equal to V , the atomic potential on that atom. Thus V - V resembles a sum cf spherically 
symmetrical potentials, located on all the atoms except that where x. is located, that one 
being approximately cancelled. Thus to an approximation the integral of Eq. (3. 9) is a sum 
of terms, esch being a product of two atomic orbitals on two different atoms, and of a spheri- 
cally symmetrical potential located on a third atom. Such an Integral Is calleH a three-center 
Integral.   I; i«. » hard thln# to compute, but analytical methods are available for finding it. 
These methods air.omu it  .::pjidine the atomic function,  say  x~>  located at one atom.  In *   ~m I 
terms of functions of r and spherical harmonics about another center,  in this case the center 
where the spherically symmetrical potential Is located.   Once the atomic functions are ex- 
panded about this center, the Integral becomes simple. 

' i 

Even without this complicated mathematics,  we can see directly the general nature of 
the expression (3. 9;     1 he Integral vanishes unless there are some part« of coordinate space I 
where Xu»   Xm«  »nd one of the spherical potentials cut of which V Is constructed,  are slmul- | 
taneou*ly different from zero    The largest terms wil' ~omc when  xk and x     sre on adjacent I 
atoms,  and when we use that term J» V - V   representing i.-ie potential on the atom where   x„ 
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is located.    It Is then clear that the more •he two wave functions  Xj  and x     overlap, »!ie 
greater will be the integral.    It Is this general type 01 argument which shows us that bonding 
orbitais are those with large overlapping of adjacent wove functions. 

These general remarks will become plainer if we work throi j-h a specific case, and 
a very Interesting one is that of finding the diagonal rrairix components oi energy for the v 
orbitais of benzene-    This is enc of the first cases where molecular erMtal energies were 
really computed, in tne work of Huckel which hat* been quoted earlier.    The symmetry or- 
bitais,  as we see frcm Eq. (3. 1), Section 5,  are of the form £(j) e     **'    %.,  where the s.'s 
are atomic orbitais on the various atoms.   These wave functions,  in the first place, are not 
normalized.    Let us then carry out this normalization.   To do so,  we multiply the wave func- 
tion by its conjugate,  and integrate over all values of the coordinates.   The result Is evident- 

iy 

I(j, k) «lm<k - ^3 Sjk . (3.10) 

where as before S,fc is the overlap Integral,    / s;*sk dv.   Now we notice that on account of the 
rotational symmetry of the molecule, this overlap integral S..  depends only on the difference 
k - j between the atoms, as measured around the ring.   Thus the summation in (3.10) may be 
converted into a double sum, first over the difference, k - j, which is to go over all values 
from 1 to 6, and then over j itself.   Furthermore, the quantity being summed depends only 
on k - j, so that this last summation merely multiplies the result of the earliestsummation by 
6.   A further thing which we may notice Is that S..   > S. •, if we are dealing with real atomic 
orbitais, since in such case S ^ =  J s s. dv, obviously independent of the order of summa- 
tion. 

We may now put these pieces of Information together, and we find for the summation 
In 13. 10) 

6(1 • 2 cos mw/3 S01 • 2 cos 2m*/3 SQi * cos ms S03) (3. 11) 

Here SQ(i, which is not written down.  Is unity, since the s's are assumed to be noioialized, 
and SQJ, S02> SQ3 are respectively the overlap integrals between an atomic orbital and its j 
nearest neighbor, next nearest neighbor, and finally the orbital diametrically opposite it. 
Thus we find that the normalized symmetry orbital is i  , 

10) e^'/3 ., j I 
—,—• i •    . (3. 12) '  i 
61/* ji + 2 cos rr.»/3S01 • . . • cosm»S03j

1'2 

Next we wisn to find the diagonal matrix component of energy for this orbital; that is, 
the one-electron energy.    8ir.ca l.i wi« benzene problem there are no other orbitais having tne 
same symmetry, there is no secular problem to be solved to find lite on#-»!ectron energy, 
ar.«i no non-diagonal ciatrtx components of energy to oc commuted.   To Una the diagonal ma- 
trix component, we must lei, H operate on the function (3. 12), multiply ty the conjugate of 
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(3. 12),  and Integrate over the coordinates.   As in '3. 8), this immediately breaks down into 
a summation of matrix components  J s,  Hs     dv of the Hamiltonian between atomic orbitals, 
and each of these components can be written out by Eq.  (3. 9).    The double sum arisina from 
(3.8) can be handled just like that which we have already met in Eq.  (3. 10),  in connection 
with the normalization problem.    When wc do this, we find at once 

HQ0* 2 cos mw/3 HQj • Z cos 2mw/3 HQ2 + c-i Hi. Knj 
E       = - (3. 13) 

1   +   2 cos mw/3 SQ1 + 2 cos 2mw/3 SQ, • ccs mi SQ3 

where E_ is the appropriate one-*l*rtrnn ^n^rwy    Here we have written H, for the matrix 
component / s. Hs dv between the k and m atomic orbitals, and as with the overlap in- 
tegrals, this will depend only on the distance Let ween the atoms k and m, If we now use Eq. 
(3.8), and let Ukm «   J\iy - VQ) sm dv,  we can rewrite (3. 13) In the form 

UQ0 • 2 cos mw/3 UQl • 2 cos 2mw/3 UQ, + cos mt UQ3 /3# J^J 
E      • t - • ———^__________^____^_ 

1 + 2 cos mw/3 SQl •• 2 cos 2m-:/3 SQ, • cos mi SQ3 

where   s_ is Ihs out-electron energy of the atomic orbital. 
Let us now consider the dependence on m which Eq. (3. 14) indicates.   In the first 

place, considering E    as a continuous function of the variable m, we see that It is periodic 
with m, with period 6.   Thus, wh*r. we were discussing benzene, and considering the energy 
as a function of M from m = - 3 to • 3, we could have considered the function to repeat 
period. a*'.y outside this range.   This is just like the behavior of the energy as a function of 
momentum in the periodic potential problem In a crystal, where the energy Is a periodic 
function of position in the reciprocal space.   Furthermore, the leading term in Eq. (3.14), 
aside of course from the atomic energy   < Q, is the term 2 cos mw/3 UQ. in the numerator. 
The reason for this is the following.   First, UQ0 Is very small.   This Is the'lntegral of the 
square of an ato*alc orbital, times the function (V - V ), which is small within the atom in 
question, since V and V   nearly cancel thar-i.  and which is large only in other atoms, where 
the atomic orbitals are small.   Secondly, IT*, a^d ~ny ccni'r«S from more distant neighbors 
than L'0l> will be smaller since they involve orbitals which overlap much less.   As far as the 
denominator Is concerned,  if the orbitals are far enough apart so that they do not overlap 
very greatly, the S's will not be very large, and the first term, unity,  will be the leading 
term, though as we see from the example, of the hydrogen molecule as discussed In Chapter 
2, the S'J can sometimes be l»rg» enough so that they are very important.   In any case, the 
general trend of the variation of E    with i>« is likely to be set more or less by «.L«s term 2 cos 
mw/3U0,. 

Now the quantity UQ,. for orbitals like the 2pw's of benzene,  will be negative.    We 
can see that from Eq. (3. 8).   In the first place. V is negative, and V    does not entirely can- 
cel it, so that V • V    is negative.   Furthermore, the orbitals s. and *:, are of the s^mc aign 
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8. GENERAL DETERMINATION OF MOLECULAR ORBITALS 

where they overlap.   Thus If they zz* 2pw's, they are positive everywhere on the positive 

side of the plane of the molecule, an1 negative everywhere on the negative side,  so that in 

either case their product is positive-    Hence the integral UQ. must be negative,  as ve have 

stated.   Therefore the energy,  as given in Eq. (3. 14),  will have a minimum at m = 0,  a 

maximum a< n   =   3,  as we have indicated in our qualitative discussion of the energy levels 

of benzene.    On th«- other hnr.'d.   if we consider the type of atomic orbital which we denoted as 

2p4> in the discussion of benzene,  we see that two such orbitals on adjacent atoms will have 

opposite sign in the region where they ovcilap most strongly.   Thu» the integrand involved in 

finding Un. in .such a case will be positive,  and Un. Itself will be positive,  resulting for <»uch 

an orbital l.i a maximum of one-electron energy for m = 0,  a minimum for rr. =  3,  as we in- 

dicated.    Of course,  it is clear that in an actual case the various quantities. Uno,  UQl,  U0,. 

u'03. SQI> Sft,. S03 in (3. 14) may all be of significant magnitude,  and they must all be con- 

sidered.    When they are fairly large, the function of m given in (3. 14) may be quite compli- 

cated,  quite different from the simple term 2 cos mw/3 U«. which we have regarded as its 

leading term.   In some calculations on such problems, these terms have been all taken into 

account, but there has been an unfortunate tendency here, as In so many problems of molecu- 

lar and solid-state theory, to make unwarranted assumptions that certain terms are small. 

Thus the overlap Integrals In the denominator of (3. 14) have often been disregarded.    We can 

see how unjustified this can be by recalling that the overlap integral between two hydrogen 

orbllals at the equilibrium internuclear distance in the molecule (about 1. 5 atomic units) is 

about 0. 72, as we see from Table II, page 52. 

The example which wa have given, from the benzene problem, will Illustrate the w«y 

in which diagonal matrix components of energy may be obtained for the symmetry orbitals: 

the method for non-diagonal components is very similar.    We thus understand the general 

method used in finding molecular orbitals by the LCAO method.    We must realize that in the 

discussions of the present chapter,  we have described how to make linear combinations of a 

very few symmetry orbitals, which may represent approximations to the real molecular or- 

bitals.    It is of c.aurn* obvious that if we had a complete orthogonal set of symmetry orbitals 

to start with, we could determine the molecular orbitals with perfect accuracy,  provided we 

solved the secular equation between all these symmetry orbitals.    This is naturally an im- 

possible program to carry out,  and we may only hope that by using the very small number of 

symmetry orbitals we have considered, the approximation will not be too bad.    It will pre- 

sumably be found that as the subject progresses,  workers will find it advisable to use a larger 

set of symmetry orbitals,  and solve larger secular equations,  in order to get better molecu- 

lar orbitals.    This more extended set of symmetry orbitals may not necessarily be best writ- 

ten as linear combinations of atomic orbitals.    Study of the corresponding problem in solids 

shows that the LCAO method ts very good for making symmetry orbitals corresponding to the 

actually occupied energy levels, but that for higher orbitals it can be very poor.    We shall 

merely mention th*» restriction as a warning,   <md shall »xp.ind on It later v hen we come to 
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consider crystals. 

The; setting up of the secular equation between, the symmetry orbitals is of course only 

part of the self-consistent field problem.    The other par. is the determination of the potential 

V from the self-consistent wave function.    If this wave function is a single determinant made 

up of molecular orbitals,  as we are assuming in this chapter,  then we have the problem dis- 

cussed in Chapter 1, of finding a self-consistent field.    Thus we may use Eq. (I. 21) of that 

chapter to get a Schrodinger equation,  and the expression for,the effective charge density of 

other electrons will be as given in Eq.  (1. 19) of that chapter.    The potential,  as computed 

from these equations, is difficult but not at all impossible to find.    It involves integrals which 

amount to finding the potential,  at an arbitrary point, of a charge distribution given by the 

product of atomic orbitals, on the same or different atoms-    Methods of finding such poten- 

tials are well known.   The molecular orbitals which appear in (1. 19) are of course the linear 

combinations of symmetry orbitals, which in turn are linear combinations of atomic orbitals, 

which we have already found, but the expression (1. 19) can then be broken down into a sum of 

terms each of which is a potential coming from two atomic orbitals, of the type just men- 

tioned.   Thus there is nothing in principle impossible about calculating this self-consistent 

field, though in practice it may be tedious. 

When the calculation has been carried out,  it wiil probably be expressed in an un- 

wieldy form for analytic calculation.   As a general rule, it wiil be desirable to attempt to fit 

it approximately with a sum of spherically symmetrical potentials located around the various 

atoms, in the manner sketched above.   In general it will not be possible to do this exactly, 

but it should not be impossible to do it fairly accurately, and the difference could be treated 

as a small correction term.   A general self-consistent field calculation following the lines 

just sketched has not been made for any molecule, but the writer believes it to be practicable, 

and probably as good as any other method. 

The few calculations which have been made fairly quantitatively by the molecular or- 

bital method, however, have used a closer analogue to the Hartree-Fock equation.   This has 

involved using essentially Eq. (l. 16) of Chapter 1, rather than (1. 21), obtaining therefore a 

different SehrRdinger equation for each molecular orbital.   The one-electron orbitals appear- 

ing in (1. 16) are taken to be the linear combinations of symmetry orbitals which we have al- 

ready described as molecular orbitals,  and (1. 16) furnishes us with a one-electron Hamilton- 

Ian operator, whose matrix components between the various molecular orbitals can be found 

essentially by methods already described.    It is this method which has been used by Roothaan, 

Mulligan, Mulliken, and others, in papers to which we have already referred, or which ap- 

pear in the bibliography.   This Hartree-Fock method is certainly better than the method of 

Eq. (1. 21) for a single determinantal wave function, in the sense that it determines the mo- 

lecular orbitals in the most accurate way possible.   On the other hand, for the reasons de- 

scribed in Section S, Chapter 1, the writer believes that the method discussed in that section 

has some advantages over the Hartree-Fock method which make it desirable for the general 
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dctcr~.;r.st;on of molecular orbitals. The difference between the two methods, however, is 

certainly small, and considering the many approximations always made in such calculations, 

it is probably immaterial which meihod is used. 

I  i 
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CHAPTER 4 

CONFIGURATION INTERACTION IN MOLECULES 

Thp method of mon-cuiar orbitais.  as we have described it in the preceding chapter, 

lorms a first step toward a program *hlcii in ;heory couiu result in exact wave functions for 

molecules.   That is.  wc could start with a potential V,  as derived from a seii-consisient 

field method,  and a one-e'ectr     Hamlltonian H associated with it.   We could, ir. principle, 

find an infinite set of solutions of the on?-electron problem resulting from this Hamilioman, 

forming a complete orthogonAl *#>t of onr*-electron functions.    We could pick out sets of n 

such one-electron functions of coordinates and spin,  where n is the number of electrons,  in 

all possible ways   forming a determinants function from each such choice.   Then we have a 

complete orthogonal set of determlnantal functions,  such that a suitable linear combination of 

them will represent any antisymmetric function of electronic coordinates and spins with any 

desired degree of accuracy.   To get the expansion of the correct wave function as a sum of 

such determlnantal functions,  we find the matrix components of the many-electron Hamllton- 

ian of the problem between liieac IcUi miiwu.tal functions,  and solve the resulting secular 

equation.   If we refer to each choice of n om;-electron functions, and each determlnantal 

function,  0s a configuration, this problem becomes the general one of configuration interac- 

tion, and we sec that in principle a complete treatment of configuration Interaction yields a 

complete solution of the problem. 

Of course, this Ideal procedure is far beyond our capabilities to carry out.   We may, 

however, build quite practicably on the methods which we have been describing In the preced- 

ing chapter, and get something which can really be handled.   Thus In the preceding chapter 

we showed how we could set up symmetry orbitais. as linear combinations of atomic orbitais. 

Then we showed how to make linear combinations of these symmetry orbitais, and to solve 

the secular equation for the one-electron problem, In such a way as to get those linear com- 

binations of the symmetry orbitais which represented the molecular orbitais as well as pos- 

sible.   !n »M« WAV we got In each case a very restricted number of approximate molecular 

orbitais, and found how to get their one-electron energies.   We then made just one deter.nl- 

nantal combination of these molecular orbitais, using those of lowest one-electron energies, 

and considered that this formed an approximation to the lowest wave function of the molecule. 

We could,  however,  have formed a limited number of other determlnantal functions from 

these molecular orbitais, by choosing different configurations,  and could have considered the 

configuration interaction between these.   As we *ha!l show in this chapter,  In some cases the 

resulting number of configurations Is not too great to handle, and such a, treatment of con- 

figuration Interaction is practicable and informing. 

A very important feature of such treatments of configuration, interaction I* the w»y in 

which they embooy In themselves various other methods of approximation.   Thus In the prob- 

lem of the hydrogen molecule,  which ••.« tiok up In d»taq in chapter Z, we found that If we 
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used ;ust two moieciuar orbits!*, the symmetric and antisymmetric combination of the aton.ic 

orbitals on the two atoms,  arid set up all the combinations of determinantal functions result- 

ing from them,  we achieves the :-ime results as if we had started with the Heitler-London 

mt-Hii>d.  included ionic as well as non-ionic states,  and carried out a secular problem of in- 

teraction between these wave functions.    Our method of handling configuration interaction,   as 

we shall describe it in this chapter,  is the direct extension of this method to more compli- 

cated molecules,  and in the same way it achieves »11 that the Heitler-London method,  when 

supplemented by ionic states,  can do.    It seems iixe u.c straightforward way of extending the 

Heltler-London method to more complicated molecules than hydrogen.   We remember that, in 

our discussion of the hydrogen molecule,  we found thai the single molecular orbital state did 

not go to the correct energy at infinite lnternuclear distance, though the Heiiler-London meth- 

od did,  and the solutions found by configuration interaction,  starting with the molecular or- 

bital functions, behaved properly at infinite distance.   In the same way here we shall find that 

the shortcomings of the molecular orbital method at infinite lnternuclear distance are re- 

moved by considering configuration interaction. 

In our chapter on the hydrogen molecule,  we followed through with three independent 

methods of getting the solution.   First we considered the Heitler-London method directly, 

supplemented by Ionic states.   The extension of this to more complicated molecules is the so- 

called valence bond method.    Like the Heltler-London rrethoct,  it suffers from the inconven- 

ience of dealing with non-orthogonal functions.   Nevertheless, cs we have mentioned earlier, 

It has had a good deal of application, but In a form In which unwarranted simplifications were 

made.    We shall discuss this method in a later section.   Secondly, we used the configuration 

Interaction method as applied to determinants combinations of molecular orbitals.   This 

method forms the main topic of the present chapter, and it seems from most points of view 

to be the most generally useful way to attack molecular problems,    l nirdiy,  we set up or- 

thogonalized atomic orbitals, orbitals localized on the two atoms, as the atomic orbitals 

were, but orthogonal to each ether.   This forms a very simple example of a method which 

has certain applications both In more complicated molecules and solids.   In solids,  as we 

have mentioned, the generalization Involves the Wannler functions,  which we shall come to 

when we discuss crystalline problems.   Here It Is very similar to the method of equivalent 

orbitals, proposed by Lennard-Jones and others,  which in some ways i3 an outgrowth of the 

method of directed orbitals proposed many years ago by the present writer and by Pauling. 

These methods are of some importance,  and we shall take them up in a later section.   Before 

going on to these more specialized topics, however, we shall proceed with our main task, the 

discussion of the problem of configuration interaction by means of the molecular orbital meth- 

od.   There has not been enough work done by this method for an extensive historical survey 

to be appropriate.    Rather, we shall plunge right Into the problems,  mentioning work which 

iias been already done as we come to It.    As In the preceding chapter,  we shall give our dis- 

cussion largely b> taking up Individual rases,  and we shall find that many of >r<* cases handled 
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CONFIGURATION INTERACTION "N MOLECULES 

in the preceding chapter are good ones for the present purpose as well.    Before going on to 

special cases,  how-ver,  we shall indicate the way in which cur study of the symmetry proper- 

ties of the molecular orbitals car. help us in the solution of the problem of configuration inter- 

action. 

1. Symmetry Properties of Wave Function? and rv»nfigy.r?.tion interaction 

Our problem in the present chapter has a very close analogy to that of the theory of 

complex atomic spectra,  as taken up in Chapter 1.    There we started with atomic orbitals of 

special types:   they were solutions of the central field problem in which the component of 

angular momentum along a fixed axis was quantized,  as well as the magnitude of the angular 

momentum.    We then found that the operators representing ihe component of the total orbital 

angular momentum of the electrons along the axis,  and ihe magnitude of this total orbital 

angular momentum,  commuted with the energy, and hence these quantities formed diagonal 

matrices.    We also found that the components of angular momentum at right angles to the axis 

commuted with the energy, but not with each other.    From this we inferred a degeneracy in 

the problem.   By diagonalizing the suitable operators,  we found that we could factor our 

secular equation extensively,  so that the final problem of solving it was not nearly as difficult 

as it would have been otherwise.   In a similar way we coi-" * diagonalize the total spin angular 

momentum and its component along the axis.    When this was all done,  we found that the secu- 

lar equation factored, each separate problem referring only to multlplets of the same I   and 

S values. 

These results were based essentially on the fact that the total angular momentum vec- 

tors for the atom satisfied the same commutation relations as the corresponding quantities 

for a single electron.   It is now reasonable to ask if we do not have some corresponding sim- 

plification in the case of molecules.   The thing which we have found to correspond to the com- 

mutation rules for the angular momentum of in .atom are the commutation rules for the var- 

ious symmetry operators, ordinarily reflections,  rotations,  and related operations, for the 

molecules.    We now expect to find lhat the symmetry operations relating to a whole molecule 

obey the same rules as the operations relating to a single electron.    It is clear from very 

elementary argucienis that this will be the case.    When we perform a symmetry operation on 

the electrons of t» whole molecule,  we of course perform identical reflections,  or rotations, 

on the coordinates of each electron.    These operations bring each electron from one point in 

space to another point in which the potential energy has an identical value.    But now we are 

considering the many-electron Hamiltonian,  which involves the potential energy of the various 

electrons in the field of the nuclei,  and the coulomb interactions between the pairs of elec- 

trons, rather than the potential energy of a single electron in a self-consistent field.   The 

potential energy in the field of the nuclei,  however,  will have the same symmetry as the po- 

tential energy in the self-consistent field,   so that the same symmetry operations will leave 

either of these potential energ es unchanged.    Furthermore,   If the whole electronic system 
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1.  SVMMFTPY PROPERTIES OF WAVE FUNCTIONS AND CONFIGURATION INTERACTION 

is reflated or rotated as a rigid whole,  by performing the came symmetry operations ->n the 

coordinates of .lach electron,  the interelectrvnic distances will all remain unchanged,   so that 

the total potential energy will be unchanged.    Since this invartance of ihe potential energy 
under a symmetry operation was ail that we had to use to show that the symmetry operation? 

commuted with the Haraihunian,   we can carry through an identical proof in this more general 

case of the whole molecule. 

We then find that we can diagonalize the same sort of symmetry operations for the 

whole molecule that we can for a single electron,  and that we have the same commutation 

rulf- between the symmetry operators as for a single electron,   so that we van make the same 

inferences about degeneracy.    It becomes highly desirable,   then,  to set up antisymmetric 

wave functions which diagonalize the same symmetry operators that are diagonalized for the 

molecular or symmetry orbltals.    We shall see,  by study of the individual cases,   how this 

can be done.    In a great many cases,   all that we have to do is to make our antisymmetric 

wave functions up out of symmetry orbltals;  the corresponding symmetry operators fcr the 

molecule then become autorr.atieally diogonalized.    In some cases,  however,  we find that 

there are additional symmetry operations which are not automatically diagonal iced when we 

make up our antisymmetric functions In this way,  and we must carry out an additional step 

to diagonalize them.    In these cases,  we may follow the pattern which we used in talking about 

complex spectra,  actually find the diagonal and non-diagonal matrix components of these op- 

erators between the antisymmetric functions,  and solve the resulting secular equations.    We 

shall find a few examples of such cases. 

Once we have set up these symmetrized antisymmetric wave functions (symmetrized, 

that Is,  with respect to the symmetry operations of the molecule,  antisymmetric with re- 

spect to the permutations of the Electrons},  we need only find the matrix components of en- 

ergy between these wave functions,  and solve the resulting secular equation.    Neither of 

these processes is easy.    The evaluation of the matrix components of the energy involves 

three- and four-center integrals between atomic orbltals,  assuming as In the preceding 

chapter that we build up our symmetry orbltals as linear combinations of atomic orbitals. 

These are hard enough to evaluate so that there are very few cases so far in which they have |   i 

been computed.    There are ways of estimating them with fair accuracy,  but there are Im- 

provements being made In the straightforward calculation of such integrals,  and one can hope 

that in the future there will really be proper calculation of the various matrix components. 

Then when these components have been found,  the secular equation,  even when we have fac- 

tored It as far as possible,  will often be of very high degree,  and computing machines are 

just beginning to be able to handle the sort of secular equation which we meet.    The whole 

subject of configuration Interaction is In a stage where the firs* steps are being taken,   and 

even the simplest problems seem very hard,  but as the difficulties are overcome for these 

problems,   it Is to be hoped that more and more complicated molecules can be ail*":1""'. 

In th«? rases which ive sha.'l be principally discussing,  there is one considerable sli. - 
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pllflcalion,   which is generally legitimate.    We can illustrate thi> simplification if we assume 

that there art N molecular orbitals which we are considering,   written as linear combina- 

tions of atomic orbital;.,   and n electrons In the molecule.    We assume that the N orbitals 

are functions of spin as well as coordinates,   so that each function of coordinates counts as 

two functions of spin and coordinates.    Then v e can form configurations from these N mo- 
, r 1 iecular o.blttJ j in Ni / jn:(N - nj!    ways.    This number unfortunately is generally very large, 

which is v,h«it leads to the difficulty of the method.    Quite aside from tha».  however, there is 

a very important theorem relating to these configurations     It is the following.    If we form N 

orthogonal linear combinations of the original N orbitals,  set up the N! / n! (N - n).:|   con- 

figurations formed from these new orbitals,  then the antisymmetric determinants! functions 

formed from these new orbitals are linear combinations of those formed from the original 

orbitals.   Hence,  any function which can be written as a linear combination of the first set of 

determinants will be expressed equally well as a linear combination cf the second set,  so that 

If we solve our secular problem, first using one set of determinants, then using the other, 

the final result will be the same In either case. 

In other words, If we have a set of symmetry orbitals, from which we could get mo- 

lecular orbitals by the solution of a one-electron secular problem,  as discussed in the pre- 

ceding chapter,  we could make antisymmetric functions either out of the symmetry orbitals, 

or out of the molccul.ir orbitals,  and the final answer would be the same,  no matter which we 

used.   Under the circumstances, since the final combination of determinants Is what we de- 

sire,  it is generally not necessary In such a case to determine the molecular orbitals at all. 

This then can be a considerable saving of effort,  so that although the method of configuration 

Interaction is a good deal more tedious than the method of molecular orbitals,  it may not be 

quite as much worse as one would suppose. 

In many cases,  however, the number of configurations N! / n! (N - n)i I which could be 

formed from all the symmetry orbitals Is so great that we cannot possibly handle all of them, 

and we omit many of them from our discussion.    In such a case,  If we use only a few of the 

configurations,  and hope that th? correct wzve functions Li.-, be r.idc _;. fairly accurately 

from them, then clearly we cannot use our theorem to avoid the requirement of setting up 

molecular orbitals.    The extreme case of this,  of course,  Is the molecular orbital metnod j 

Itself, where,  as this method was Interpreted in the preceding chapter,  we use only one de- 

terminant.    Sometimes,  even in this case,  however,  we can make partial use of the theorem. 

Thus some of the configurations would arise from taking electrons from the inner shells of 

the atoms,  and putting them In the outer molecular orbitals.   Such determlnantal functions 

would correspond to very high diagonal energies,  corresponding to an x-ray excitation  and 

for this reason we may expect that the* will .Appear In the final soluiion with very sm'di co- 

efficients.    We shall not make any serious error if we disregard them entirely.    We may then \ 

interpret the number of orbitals N which we use in computing the number of configurations, 

and the number n of electrons to So used in them,   slmplv as ti.« number of orbitals and I 
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electrons outside the closed shells of the atoms-    For the electrons In these closed shells,  we 

could use merely the symmetry orbltals-    Or we could go even further:   on account of th* ap- 

proximate non-overlap of the inner atomic orbitals on different atoms,  we could use the ori- 

ginal atomic orbltals in setting up our determinantal functions,   and the results would still be 

substantially the same as if we had used molecular orbltals.    In the simple cases which we 

shall discuss later in this chapter,  where we are dealing mostly with very light atoms,  it is 

generally only the Is electron which is handled in this way, but in some cases the 2s has also 

been regarded as an inner electron, as compared with 2p.    This approximation for the Is is 

presumably justified, but for the 2& it is rather more questionable. 

?•• Diatomic Molecules; the Oxygen Molecule 

Rather than go further with our general remarks,  let us now proceed with special 

cases.   The diatomic molecule Is of course the one about which most work has been done,  and        * 

we start with it.    Here wc have already noted that one of the symmetry operations works as 

with atoms.    That \s, the total component of angular momentum along the axis of all electrons 

is constant.    From what we have seen in an earlier section,  we see that the corresponding 

symmetry operation is an Infinitesimal rotation about this axis.    Also there is another sym- 

metry operation:   reflection In a plane passing through the axis of the molecule.    And in the 

case of a symmetrical molecule, there are additional symmetry operations:   reflection in the 

plane normal to the axis passing through the center of tnt molecule,  and inversion in this cen- 

ter of symmetry.    Let us consider which of these operations commute:  at the time when we 

were discussing diatomic molecules in the preceding chapter,  we had not yet developed our 

concept of the commutation of symmetry operations,  and hence did not discuss this question. 
i 

We can answer our question very easily by writing the operations in analytic form.    If 

we use spherical polar coordinates, with the axis along the axis of the line of the molecule, 

and the origin at the center of Inversion (if there is one), the Infinitesimal rotation corre- 

sponds to changing the coordinates r,  6. $ into r,  8. $  +  A<$>.   Reflection in the plane   MO, 

which is typical of planes passing through the axis,  changes r,  6, <J> into r,  9,   - <>.    Reflection 

in the mid-plane changes r,  6   $ in.o r,  w - 9. 4»-    And Inversion changes r,  9, 4> Into r,  * - 

o,   4>+w.   That Is,  Inversion Is a combination of reflSwtlon in the mid-plane,  and rotation 

through ».    It is olear from this that reflection In the plane   4=0 does not commute with ro- 

tation through Aif>     If we rotate first,  then r- flee',   we change r,   9,  <$> into r,   6,   -  <$>  •  A$, 

whereas if we reflect first,  then rotate,  we change r,  9, • into r,  0,   - • • A*.    There is one 

exceptional case,  however:   if the wave function is independent of 4>,  neither of these opera- 

tions dors anything to it,  and it obviously makes no difference which order v.c perform them 

in.   A wave function independent of $ represents a V state,   and w#» see therefore that for such 

a state,   reflection in a plane such as   <• = 0 commutes with the roiation,  and hen e can be si- 

multaneously ''iagonali^c-d.    Heu:g a reilecUnn,  for which ••.< : successive performances of the 

same operation result in io»ntUy,  the eigenvalues of the operation must be t 1.    In other words 
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the wave function connected with a £ state will be either synmeii ic or antisymmetric under 

sue h a reflection.    At first sight it seems paradoxical that wc could have antisymmetry under 

such conditions,  but wc shall shortly find cases where we do,  and the implications of this 

type of operation will become clearer.    A £ state which Is symmetric on reflection Is denoted 
Z+ re- 

state,  one which Is antisymmetric ssa ^ .    There Is no corresponding symmetry 

for anything but a £ state. 

Just as the components of angular momentum of the Individual electrons along the axis 

are denoted by the symools   <r,  «, 6, etc.,  we have already seen that the corresponding com- 

ponents of angular momentum of the •vhole molecule are denoted by £. "*•  ^.  etc.    The 

standard notation for the quantum number measuring the component of angular momentum 

along the axis,  which Is 0 for <r states,  t 1 for »'s,  etc.,  Is   X,  though we have often denoted 

It by m,  and the corresponding quantum number for the molecule as a wholo is  A.    If we 

build up a determinants function from molecular orbltals,  we see at once that A equals the 

sum of the    X's of all the oibltals,  just as In an atomic problem M.  equals the sum of the 

n»| 's of all orbital;..    To see this in a straightforward and analytic way, we note that one of 

the products from which the determinant is formed will contain the factor e    '  lel *^el 3* 

....  where   K, X^, etc.,  are the X'ft associated with the various orbltals,  and  #., 42.   .  .  . 

are the corresponding coordinates.   When we rotate the whole system through an angle  A+, 

this means that +., +-,  .  .  . are each Increased by this same angle A*.   Thus the exponential 
is multiplied by the factor e

l(*i • x2 • • •  • )*•. e^A* ^ where A ls the lum of the  x'a.   We 

see. in other words, that if we build up our determlnantal function out of molecular orbltals, 

the resulting function will automatically diagonallze th* rotation around the axis. On the other 

hand, we verify the fact that cur function will not ordinarily diagonUize the reflection opera- 

tion. Since this changes each + into It's negative. It will change the factor e * * e * 2. . . 

into e" ^*l e" ^ 2 . . . , which Is certainly not u coiutlaul ;.uii«?s the original function. On 

the other hand, th* new function Is certainly degenerate v.ith the original one, bO that we see 

that In complete molecules, as In molecular orbltals, there will be degeneracy between the 

state with a given value of A,  and that with its negative. 

From this dependence on angle,  we can now understand the situation Involved In the 

£    and £~ states better.   We can build up a Y state out of orbltals which are not themselves 

or orbltals; we need merely have the sum of the   X's equal to zero.   Thus we sec that in a ) 

state,  just as in others, the reflection operation can transform a function with a factor e    '   ' 

e   2*2,  ,  ,  Uiio one with a factor e"   "'»"' * '.,  .  . Now, however, In contrast to the 

earlier case where A  la different from zero,  this new state does not correspond to a different 

symmetry type from the original one;  the ener,{y can have non-diagonal matr'jc components 

between the two states.   Since the two states are degenerate with each other, the result will 

be that the suitable linear combinations to use are the sum and difference of these determl- 

nantal functions.    The sum will then Involve the factor cos (*j*j  * *•>*/. •  •    )>  which Is un- 
charged when all the   +'s change Into their negatives,  and the difference will Involve the factor 
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2. DIATOMIC MOLECULES:  THE OXYGEN MOLECULE 

sin (KJ*J  • ^2^2 •  •  • )•   wnicn is antisymmetric on reflection.    The firwt combination,  in 
other words,  corresponds to a £     state of the molecule,  the second to a  £    state-    It is of 

course obvious that in a determinantal function formed entirely from o~ molecular orbltals, 

where there is no exponential factor expressing dependence on angle,  this degent     :y cannot 
s»rise,  »»*H the ?*st? is Automatically a £    state. 

In case the molecule is symmetric about a mid-point,  there will be the symmetry op- 

erations of reflection In the mid-plane,  and Inversion changing r,  8, 4> into r,  w - 8, 6.  or r, 

* - 8,  $ + w respectively,  as we have seen.   These operations,   as we can see by inspection, 

commute with the rotation through an angle A+.    Thus in such a case we can dlagonallze the 

reflection and th<: inversion, and the eigenvalues of these operations will be * 1.   As in the 

molecular orbital,  the usual convention is to describe a state which is symmetric under the 

inversion operation as a g state, one which is antisymmetric as a u state.    It is now obvious 

that If we make up a determinantal wave function out of molecular orbltals each of which is g 

or u in its symmetry, the determinantal function will be automatically uiagonallzed with re- 

spect to the inversion.   This inversion will change the sign of each u orbital which appears 

iti the determinant, leaving each g orbital unchanged, so that a determinant formed from an 

even number of u orbitela «iii have g symmetry, one formed from an odd number will have 

u symmetry. 

This completes the study of the symmetry properties of the determinantal wave func- 

tions.   There is still one aspect of the problem to consider, however:   the spin.   This was 

trivial In the one-electron problem, but here we must consider it.    We can, however, handle 

it entirely independently of the orbital symmetry properties.   Thus let us consider a given 

choice of n spin-orbital one-electron functions, chosen from the total number of N such func- 

tions.   In this set of n functions, we shall find some functions of coordinates alone which are 

occupied by two electrons, one of each spin) some occupied by one electron.   If there are N' 

occupied by ore electron, we can imagine other determinants in which each function of co- 

ordinates is occupied by the same number of electrons as in the determinant already con- 

sidered, but in which one or more of ihe electrons may have the other spin.    Clearly there are 
N' N' 2     such determinants, differing only In spin.   The problem of degeneracy between these 2 

states Is the ordinary problem of spin degeneracy,  which can be carried through just as in the 

atomic case.   That is,  we can set up the matrix components of the quantity S     • S     + S x        y * 
between these functions, and dlagonalize it, so as to get separate combinations of determi- 

nants,  each combination corresponding to a definite multiplicity.    We know that the Hftmll- 

tonian has no non-diagonal matrix components of energy between functions of different mul- 

tiplicity.   Thus this process of setting up linear combinations of determinants automatically 

factors our secular equation, allowing us to tr«»at states of different multiplicities independ- 

ently of each other. 

In such a problem of spin degeneracy,  each detsruiinant*' wave function i» composed 

of the same oroitai* as far as the coordinates are concerned,  so that the combination of 
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determinants which diagnnaUzes the magnitude of the spin,  or which corresponds to a definite 

multiplicity,   will also diagonalUe the symm.-'try operations of rotation end inverr'cn.    Thus 

we hsw* spcun»d as much factoring   of the secular equation as possible:   we have separated 

• H» states of each multiplicity,   and of each type of symmetry as far as the coordinates are 

'. oncernec'     From that point on.  we must really solve secular equations between the various 

s:at?« of the ?am? !»"Jufplicity and symmetry. 

This procedure will now become much clearer if we go through an actual case in de- 

tail.    We shall take the case of O,,  in which a careful study of configuration interaction has 

been made by Meckler.v  '   We have already discussed this case from the standpoint of mo- 

lecular orbital theory, but now we wish to go into it a good deal more thoroughly.    First we 

remind ourselves of the symmetry orbitals of this problem,   as taken up In Section 3,  Chapter 

3.   Wo have a_ and <r   orbitals formed from the Is atomic orbitals,  o~   and o\  formed from g u g u 
the 2s atomic orbitals,  cr_ and o*   formed from the 2p's,  and w. _ and w. .. formed from the 

g U T g X U 
2p*s.    We should expect the <r   molecular orbitals to consist of one almost exactly formed 

from the Is orbitals,  one largely formed from 2s but partly from 2p,  and one largely from 

2p but somewhat from 2s.   Meckler disregards this probable mixture,  assuming that one mo- 

lecular orbital is identical with the symmetry orbital formed from the atomic 2s orbitals, 

but orthogonallzed to the Is,  and he assumes that this molecular orbital is occupied by elec- 

trons of both spins, in all configurations which he considers.   Similarly he considers that 

there is one molecular orbital of o*   type formed entirely from the 2s,  and always occupied. 

We are then left with the following molecular orbitals which will not always be occupied:   the 

o~   and cr   formed from the atomic 2o's,  and the •..*«...    This gives us six mole      _•  or- g u i g      i u 
bitals,  which combined with the two spins gives twelve, to be occupied by the eight electron* 

which are not atccmodated in the orbitals formed from the Is and 2s atomic orbitals.   The 

number of configurations to be considered is then 12! /8! 4!   « 495.    It is obvious that without 

the factoring arising from symmetry ;vnd multiplicity it would be hopeless to solve the result- 

ing secular equation. 

We shall not consider all 495 of these states In our analysis of the symmetry, though 

the methods we shall use are typical of those required for the complete problem.   The ground 

state is known to be of the form    £",  and another particularly interesting state Is the   2.   » I 

which lies somewhat above It     W- «ne.!l carry through the complete discussion of the con- 

figurations entering into these two states,  and this will sufficiently Illustrate the method.    As • ', 

a first step, let us consider what symmetries of molecular orbitals must enter into any  £ g 
state;  when we have done that,  we shall next consider the multiplicity problem.    For a £ 

state, the sum of the   X, values of the various molecular orbitalj must ~e zero.    For a g state, 
>    i 

we must have an even number of u orbitals,  and hence an even number of g's.    A little re- 

A.   Meckler,  Quarterly Progress Report,  Solid-State an<1 Molecular Theory Group,   M. I. T. 
July is.   »os? 
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flection wiii phow us that this can be achieved only in the twelve ways listed in Table VI!!. 

Table VIII 

Number of Electrons Occupying Each Molecular OrbttaJ in O. 

Number 
of State W*0 

W-g •fu -u *g CTi 

1 2 2 2 2 

2 2 2 2 2 

3 2 2 2 2 

4 2 2 2 2 

5 2 2 2 2 

6 1 l 2 2 2 

7 1 1 2 2 2 

8 2 2 1 i V 

9 2 2 1 i 2 

10 1 1 1 1 2 2 

11 1 2 2 } ! 1 

12 2 1 1 2 1 1 

Here we give the number of electrons occupying each of the molecular orbitals. in each of the 

twelve assignments of electrons to orbitals.   We readily verify that each of these assignments 

satisfies our two conditions:   the sum of the X values is zero,  or there are equal numbers of 

electrons ir + or  - states} and there are an even number of electrons in u   states. 

Now we must see how the spin degeneracy affects the problem.    First,  as a matter of 

curiosity, let us see how many of our 495 determinantal functions are included among those 

of Table VIII.    In the states numbered 1 to 5 In Table VIII, there ere no orbitals with only one 

electron,  and hence no spin degeneracy: each of these le»»i? cr'.y to a singlet.   In the states 

numbered 6 through 9, there are two orbitals each containing one electron,  so that each leads 

to 2    =4 determinants, giving of course a singlet and triplet.    The states numbered 10 
4 

through 12 have four orbitals each containing one electron,  so that each leads to 2    =16 de- 

terminants,  which by the usual vector model for a four-electron problem result in a quintet, 
three triplets,  and two singlets.    Thus our table includes 5 +   16 +  48  = 69 of the 495 de- 

terminants of the problem,   and will lead to  .5 singlets,   13 triplets,   and i qu n»c;ts     We must 

next exai-ine In detail the nature of the singlets and triplets,  which alone wc shall consider, 

and find which ones of these have the symmetries   £   ,     £   ,  which are the only ones we are 

working out.    This demands that we examine the wave functions in detail,  to see which    tus 

are £    and which ones are  T ,   since this Is the only remaining distinction which . an help 

in factoring the secular equation 

When we reflect in the plane   $=0,  the symmetry operation involved ir. 'he distinction 
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between £ and £ ", a function w+ changes'Into w_, and vice versa. Let us consider what 

this does to a single* state like that represented by the determinant formed from state 1 of 

Table VIII.    The original determinant has as the <&i«izents of its first row the quantities 

w+g(l)«(l)*+g(l)P(l)w.K(l)a(l)».g(l)P(l)-   •   • 

The effect of changing jr. into «_,  and vice versa,  is to interchange columns in this determi- 

nant.   For instance,  it will interchange the first and third columns,  and the second and fourth, 

if they are arranged as shown, with corresponding interchanges among the columns contain- 

ing the w .'s.    Clearly this will require an even number of Interchanges.   But a determinant is 

not affected by an even number of interchanges of its rows or columns,  and hence tno wave 

function is unchanged by reflection in the plane • • C,  so thai '.he state 1 of Table VL1 rcpre- 
lr-4 sents a   2, a state.   The same thing is true of states 2 and 3 in Table VIII. 

The situation is quite different,  however, for states 4 and 5 of Table VIII.    it is clear 

that if *. '9 change into »_*• and vice versa, the state 4 will be transformed into 5, and 5 into 

4.   In othei- words, these determinantal functions as they stand are not eigenfunctlons of this 

reflection.   Tb»y are,  however, obviously degenerate with each other, and we should expect 

that the proper linear combinations of them to diagonalize the reflection would be their sum 

and difference.   We could check this, if we desired, >>y finding the non-diagonal matrix com- 

ponent of the reflection operator between them, which would clearly be unity, since this op- 

erator operating on function 4 leads to S, and operating on !> leads to 4.   A secular equation 

dlagonallztng an operator which has no diagonal matrix components, but non-diagonal matrix 

components of unity, will always lead to the sum and difference of the original functions as the 

new eigenfunctlons, and the eigenvalues will be plus and minus the non-diagonal aiatrlx com- 

ponents.   In other words, of the two resulting eigenfunctlons, the sum and difference of 4 and 

5 (properly normalized),  one will have an eigenvalue of unity under the reflection operation, 

and will hence correspond to a   £  . y-'"!!r the other will have an eigenvalue of - 1, and will 

hence be a   JT ".   From the two determinantal functions 4 and 5, then, we get only one   £ 

state. 

Next let us consider the determinantal functions formed from state 6 of Table VW. 

There will be, as we remember, four such determinants,  representing a singlet and a triplet. 

Fron* what we have just seen, the orbltals v     and w    , each occupied by two electrons, will 

not lead w any change in the determinant when we perform the reflection, so that the only or- 

bltals we have to consider are the w     and »    ,  each occupied by one electron only,  and the 

problem Is just like a two-electron one as far as the symmetry is concerned.   When we per- 

form the diagonalizailon of spin,   w* know that the nrhltal part of the wave function associated 

with the triplet state will be of th* form w+ (1) ir    (2) - «    (1) «+R(2).  which clearly trans- 

forms into its negative if w+ and »_ are Interchanged.   Thus this state is a   £ L the type we 

»re considering.   On the other hand, for the singlet state, the orbital part of the wave function 

will h*v* th* for-jn w.fl) *    (2*  r w jt! i «.'?.!.   #hloh transforms into itself, leading to a 
*S ~S "m *g 
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Y  .   again of the type we are const'luring.   The same situation holds for the singlets and 

triplets formed from states 7,   8,  and 9 of Table VIII. 

The determinants formed front state 10 of Table VIII are a good deal more compli- 

cated.   They lead,  as vrs have mentioned, to a quintet,  three triplets,  and two singlets, and 

we must examine the actual form of their wave functions before we can state their symmetry 

properties with respect to the reflection.   This demands knowing the wave functions of the 
various multiple'.! srising in the problem of spin degeneracy of four non-equivalent electrons. 

We have solved the similar but somewhat simpler problem of three electrons in Eqs. (1. 10) 

— (1. 12) of Chapter 1.    The same methods serve easily to solve the problem of four elec- 

trons,  and we shall merely state the results.    We start with four non-equivalent orbitals a, 

b,  c,   and d, with one electron,  of either spin, in each,  and solve the problem of degeneracy 

between the 16 determinants arising from the various possible assignments of spin.   We write 

the resulting wave functions in the following way.   First, we know that each of the resulting 

multlplets will have a component connected with Mg = 0, so that we can get complete Infor- 

mation about the properties of the wave functions by considering only this pr oblem, with Its 

six determinants out of the total of sixteen.   Let us denote these determinants according to 

the listing of 7a°)le DC.   Then we can represent any one of the resulting functions as linear 

Table DC 

States of MQ • 0, Spin Degeneracy of Four Electrons 

Number 
of State abed 

1 + + 

2 + - • 

3 + - - • 

4 + • 

5 • - + 

6 + + 

combinations cf the states 1 -- 6, with coefficients T., T2, . . T^. 

We .hen find that the wave function of the quintet is represented by the combination 
Tj  * T2 • Tj « T^ » Tj ' Tfc.   For the three triplets, the following equations must be 

satisfied:   T. + T,   • 0, T, + T,  = 0, T» + T,  • 0.   In other words, we can set up the three 

combinations 1-6,  2-5, and 3 - 4,  of the functions 1 — 6,  and the triplet functions must 

be linear combinations of these three functions.    On account of the three-fold degeneracy,  we 

can determine the correct combinations only by solving a secular equation for the energy. 

For the t^c sLi^iets.  wc must have foi>r equations satisfied:   Tj  - T^,  T2 « Tg,  T3 = T4, 

Tj T Y, + T'3 « 0.   That lu, we can set up the three combinations 1+6,  ?. + 5,  3 + 4,  «»d 

•ny tw< linear combinations of th**» which are orthogonal to the quintet function.   wh«.-h 1« th»» 
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sum of the three, can be t.iken as singlet fiun-Uoiis.    Here again the secular equation foi the 

energy must he solved to get the correct combinations. 

It is now clear that to stuc'y the symmetry properties of our functions formed from 

•tat* 10 of Table VXH.   AC ir.ust first identify t;« functions a. b,  c, d of Table DC with the 

functions w    , »_^ w    , *     of Table VIII,  and then must consider the symmetry of such 

combinations as 1 t 6,  2 t 5,  and 3*4,  of the functions of Table IX.   The function 1 has a 

determinant whose first row contains the terms w    (l)a(l) »._(1)«(0 w+u(l)P(l) tr_ (l)P(l). 
When we reflect In the plane  • = 0, the first two columns change place, the third and fourth 

columns change place,  and the determinant as a whole Is unchanged.   The same thing is true 

of the function 6.   In other words, both combinations 1 t 6 are of the type £   . 

The situation Is quite different with the combinations 2 t 5.   The first row of the de- 

terminant representing function 2 of Table DC Is w+ (l)a(l) w    (l)P(l) »+u(l)o(l) w_u(l)P(l), 

and for function 5 we have the same thing with  a and p interchanged.    When we reflect in the 

plane  •= 0, function 2 changes into 5, and vice versa.   Thus the sum 2 + 5 changes into it- 

self, but the difference 2-5 changes into 5-2, or into Us negative.   The same situation 

holds with the combinations 3 i 4.   Putting this Information together, then, we see that the 

function 1-6 represents the only   £    which we have from our stave 10 of Table VIII.   The 

two combinations of the quantities 2-5 and 3-4 represent two    £I's-   And the two com- 

binations of the three quantities 14-6, 2 + 5, and 3 + 4 which represent singlets are both of 

the l£* type.   Prom state 10 of Table VHL then, we have two 3£ "'a, and two l£*'s. to add 

to the list of those which we are Interested In. 

Now let us consider the states 11 and 12 of Table VIII.   As we examine their nature, 

we see that reflection in the plane • = 0 will transform one Into the other.   That Is, we can 

set up the one quintet,  three triplets,  and two singlets arising from 11, and the similar mul- 

tiplets arising from 12, and reflection In the plane <t> • 0 will transform each function of type 

11 to the corresponding one of type 12.   We then have a problem of degeneracy, just as we did 

with the states 4 and 5 of Table   III.   We shall have to take sums and differences of the vari- 

ous states formed frcrr 1 \ and 12 of Table VIII, and In each case the sum will lead to a £ 

function, the difference to £~.   Thus from the states 11 and 12 of Table DC, we shall iind 

three    £* states,  and two    £    states,  In addition to other states whose symmetry wt are 

not considering. 

*A'a can now survey the whole situation,  and see how many states el the desired «ym- 

metry we have in all.   Of the   Y * states, we have one each from states 6,  7,  8,  and 9 of 
8 

Table VIII, two from siaie 10,  and three from the combination of states 11 and 12,  or nine In 

all.    Of the    X_:s.  we nave one each fre:r. statec I,  1,  zrji 3 cf Tible VIII. one from the com- 

bination of 4 and 5,  one each from 6,  7,  8,  and 9, two from 10,  and two from the combination 

of 11 and 12,  or twelve In all.    Thus we must solve a secular equation of nine rows and col- 
3 r* - 1 •-* -f uxnns for the    £,    states,  and one of twelve rows and columns for the    2. a states.    Meckler. 

In the reference cited earlier,  has set up the appropriate functions in the manner we havu 
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been describing, has found the matrix components of energy between them,  and has solved 
these secular equations for a number of internuciear distances, obtaining the various energy 
level*,  and the wave functions of the states of the desired symmetry as linear combinations of 
the unperturbed wave functions. 

Let us now consider some properties of the solutions, as Meckler has found them.   In 
the first place, the electronic configuration which we arrived at from the molecular orbital 
theory In the preceding chapter, as representing the ground state of the molecule, is that 
labelled 6 in Table VIII.   This leads to a    Y " and a   £    state, as we have already seen,  and 
tbs triplet must lie lower.   The reason why Meckler .hose these two symmetry types to in- 
vestigate is obvious from this:   he warned to see how much the predictions of the simple mo- 
lecular orbital theory arc affected by configuration interaction.   It is clear that in this prob- 
lem, which does not have » singlet arising irom a closed shell for its ground state,  even the 
simplest molecular orbital theory must taxe into account some interaction of determinants, 
enough to build up the proper type of function out of configuration 6 of Table V1U to represent 
the proper multiplicity.   As in the hydrogen molecule,  the molecular orbital state by Itself 
forms a moderately good representation of the correct ground state at the observed internu- 
ciear distance, but is entirely wrong at infinite distance.   This can be seen in several ways 
from the results of Meckler.   In the first place,  as far as the energy is concerned, the ground 
state which he finds, the lowest   £" state, agrees wry well with observation, having its 
minimum at just about the right internuciear distance, and giving e. dissociation energy, and 
a vibration frequency around the minimum, in good agreement with experiment.   On the other 
hand, the diagonal energy of the molecular orbital state corresponds to only about a half of the 
correct binding energy, and goes to a very much too high value at infinite separation.   This 
situation is something like that shown in Fig. 2, Chapter 2, where H., represents the diagonal 
energy of the molecular orbital state,    £   . the energy ot the ground state: only for oxygen 
the discrepancy between the two energies is a good deal greater than in hydrogen. 

Another way to see to what extent the molecular orbital 6t«te represents the correct 
ground state is to find, the coefficient by which this molecular orbital function is multiplied, 
when we expand the correct ground state as a linear combination of the nine    £' states.   This 
coefficient, as a function of Internuciear distance, is given in Table X.   The correct inter- 
nuclear distance is about  2. 26 atomic units, and we see that there the coefficient of the mo- 
lecular orbital function is something like . 97, its square being . 94, so that the squares ot the 
coefficients multiplying all other functions can only be about 0. 06.   Here, in other words, the 
molecular orbital function is rather good, though the admixture of other functions is very 
necessary to get a good value for the energy.   But as the distance increases, there is a very 
rapid change in the coefficient, over to the value 0. 3536 * (8)~   '    which it has at infinity. 
In other words, at infinite separation the molecular orMtal state by it«elf is no approximation 
at all to the ground state. 

This situation 1* slmil'-r in principle to what we found with hydrogen,  w>.ere at infinite 
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Table X 

Coefficient Multiplying Molecular Orbital A'ave Function In 
Expansion of Correct Ground State 

Internucle&r 
Distance Coefficient 

1.5 e.. u. 0.9957 

2.0 0.9848 

2.5 0.9668 
4.0 0.4361 

6.0 0.3538 

9.0 0.3536 

•0 0.3536 

separation there were two states making up the ground state, with equal coefficients:   the mo- 
lecular orbital state. In which b«th electrons were in the symmetric orbital if b,  and that in 
which both electrons were In the antisymmetric'orbital a - b.   Here, however, the situation 
Is much more complicated,  and we shall not go through the details of showing the connection 
between the molecular orbital state and the atomic tnultiplets.   Meckler shows that at infinite 
distance the ground state is a combination of states 6,  7,  8, and 9, of Table VIII,  all with co- 

t/2 
efficients t(8)   *'  j and of trr? sf the three triplets fors*ed from states 11 and 12, with coef- 
ficients t 1/2.   The reason for the complication is the fact that the ground state of the atom of 
oxyger. is a   P, but the same configurations also lead to a   D and   S.   All the combinations of 
these multlplets for the two atoms must be reproduced in the various states arising at infinite 
separation from our 495 determinants! functions.   The ground state of the molecule must go 
into the   P stat»« of the separated atoms, in which the S vectors can combine to give a singlet, 
triplet, and quintet, .and the L vectors to give A values of 2,  1, 0,  - 1,   - 2, or to £, 77", 
and s states.   The problem of analysing all these states at infinite separation is considerable 
Lui «« tiad mat both a    Y~ and a   T    state should arise from this lowest combination of mul- 
'inlets,  and these are the lowest of the states of the molecule, as found by solving the nine- 
fold and twelve-fold secular equations. j 

With a molecule of this sort, In other words, the states which must be considered at 
infinite separation, in our study of configuration interaction. Include not only unionized and i 
ionized states, as with hydrogen, but inside each of these categories they include many dif- 
ferent combinations of atomic multlplets.   And a correct treatment of configuration interaction, 
such as Meckler has carried out, given each state of the molecule going at Infinite separation 
to one of these states of the combined atoms.   It is no wonder that the proolem Is much more 
complicated than with hydrogen.   There is one very interesting result of this situation, which 
is found in Meckier's results.    His energy level for the ground state,   as s function of lnter- 
micle«r sep»rat<nn,  ~i?e# fr*»rr {*n :r.inin:i>m with lncreasi*-- •'•'••"v.'c'ear distance, to a maxi- 
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mum,  which ii reaches at about 4 atomic units,  and then fails again to the value at Infinite 
distance.   The reason sterns to be the following.   The energy of the ground state appears to 
be rising,  at distances less th.-.rj 4 units, as if it were heading at infinite separation for an 
energy somewhere midway in the group of c-nerory levels which would be formed from a com- 
bination of the various multiplets of the two oxygen atoms.   It persists in this direction until 
it has risen decidedly above the ground state at infinite separation.   Only then does the wave 
function begin to adjust itself to the correct linear combination of determinants to form the 
ground state at infinity.   It appears that the correct linear combinations of determinant*! 
functions to result in the atomic multiplets are of completely different type from the combina- 
tions resulting in the molecular energy lev-is,  and that there Is a rather sudden shift from 
one type of combination to the other type,  at around this distance of 4 atomic units.   Going to 
smaller distances, the levels spread cut en account of the interaction of molecular type,  while 
at larger distance they spread on account of the atomic type of interaction, with aome con- 
traction of the set of level: at this distance. 

This behavior f s shown in Fig. 6, in which the energy of all but the highest of the nine 

wuiMuCLfM oantNGt *TOMC imr* 

Fig. 6 
oxygen,  a« function of internuclear 

,•• 
Energy levels of   £ " states zi 
distance,  according to Meckler.    Highest level, which goes to O 
0~"    F a at infinity, lies above the top of the figure.   Dotted curve 
show* <i<agonal energy of molecular orbital state. 

T " states is shown as a function of inter nuclear separation.   We see the distinct contraction 
of the group of states around the Internuclear distance 4.    We also see clearly the group of 
four levels going to states formed from the multiplets of two !»*«.»trsl oxygen atoms, lying low- 
-••.t at infinity, then four inore 'tales going to a combination of a positive and a negative ion. 
The remaining state goes to a combination of K doubly charged pesftiv* and negative ion »'. 
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Infinity, and lies far above the other levels shown.    The dotted line In the figure indicates the 
molecular orbital state,   which as we can see is heading ipprcx m?t?!y midway in the group of 

configurations formed from O   and O ,  as we should expect from the known partially ionic 

character or molecular orbital states at infinite separa".on. 

The energies of the    £    states form a diagram similar to that of Fig. 6;  it would 

complicate the figure too much to try to plot both sets on the same figure.    Tne lowest state 

of this group goes to the same energy at infiniiy as the lowest siate of Fig. 6,  but lies some- 

what above It at the internuclear distance corresponding to thp minimum,    This lowest singlet 

state also has a minimum, at about the same internuclear distance as the lowest triplet,  and 

it has a practically Identical hump in the curve, the two states almost exactly coinciding in 

energy for distances greater than 4 atcudc units.    In other words, the exchange Interaction 

which causes the splitting between singlet and triplet diminishes very rapidly as the internu- 

clear distance Increases.   This fact will prove to be of interest to us in our later discussions, 

where we take up the problem of ferromagnetism.   The oxygen molecule, which of course is 

paramagnetic on account of its triplet ground state, is one of the simplest examples of a mag- 

netic substance, and its singlet-triplet separation is probably similar in its general features 

to the energy separations between magnetic and non-magnetic states which we find in the 

theory of ferromagnetism. 

The case of oxygen, which we have used to illustrate the configuration interaction in 

diatomic molecules, is particularly complicated.   To shev that all roses are not so difficult, 

we shall finish our discussion of diatomic molecules by taking the much simpler case of fluo- 

rine,  which is simpler because it has a single bond,  rather than the double bond of oxygen. 

This case has not been worked out in detail, but we can predict easily how it would go.   We 

now have ten electrons in the states shown in Table VIII,  raiher than the eight in oxygen,  and 

again we presume that the ground state will be a Y    state,  in this ca*»*    £*,  since this is the 

symmetry type of the molecu'.ar orbital solution.    W<; show in Table XI the various states 

Table XI 

Number of Electrons Occupying Each Molecular Orbital in F, 

of State **« %u " -u *i 
rr 

1 2 2 2 2 2 

2 2 2 2 2 2 

3 2 ?. 2 2 ) 1 

4 1 1 2 2 2 2 

5 2 2 1 1 2 2 

6 1 2 2 1 2 2 

7 2 1 1 2 2 i 
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which could contribute to £ states of the molecule; the problem Is now simple enough so that 

we have given these contributing to Y   ;s as well as Y.J9     ^"r slate 1 is the molecular or- 

biial state,  and is oi    ^    type.   State 2 is of the same type,  and the interaction between 

these two states is just like that between the two molecular orbital states in hydrogen, leading 

to the two   Y _ states in that molecule.    State 3 leads to    Y    and    Y   ,  MAU is similar to the 

corresponding configurations in hydrogen.   Here,  however,  we have other configurations of 

the same symmetry,  arising from the excitation of v electrons.   Thus states 4 and 5 each 

lead to a   £    and    Y.  in close analogy to states L,  7,  8,  and 9 of oxygen,  as given in Table 

VIII.    Finally states 6 and 7 of Table XI show the same sort of degeneracy as 11 and 12 of 

Table VIII.   Neither one is an elgenfunctlon of the operation of reflecting in the plane  6=0, 

so that we must take sums and differences.   When we do this, we find    £  ,     £",     Y  ,     Y 

Thus the ret result Is that we have four states    £ . two    Y_. two   £   . one    £", two   Y. 

and one   £ "•    l *:e secular equation,  in other words, is factored so that no resulting secular 

equation will have more than four rows and columns,  and the problem should be an easy one 

to carry through.   The ground state should come as the lowest root of the four-by-four secu- 

lar equation.   It would be very interesting to see how this case would work out,  as represent- 

ing a straightforward single covalent bond, in a case more complicated than the hydrogen- 

hydrogen bond which we meet in H,. 

3. The Water Molecule 

Next we consider the water molecule, for which the molecular orbltals have already 

been discussed in Chapter 3, Section 4.   We remember that we chose the plane of the mole- 

cule as the yz plane,  the z axis being the bisector of the angle between the OH bonds.   We 

found that there were two symmetry operations, reflection in the yz plane and in the xz plane, 

which commuted with each other, su th»t all wave functions are either symmetric or antisym- 

metric o.i reflection in the yz plane,  and similarly all are symmetric or antisymmetric on 

reflection In the xz plane.   The molecular orbltals which were symmetric on reflection in the 

yz plane, or the plane of the molecule, were called <r orbltals, those which were antisym- 

metric were * orbltals.   Among the o- orbltals, there are two symmetry types, those sym- 

metric or antisymmetric respectively on reflection in the xz plane.   Those which are sym- i 

metric are formed fron. the carbon Is,  2s,  and 2p_ orbltals,  and from the sum of the two 

hydrogen Is orbltals.   There arc thus four such molecular orbltals, of which the one with 

lowest energy is much like the carbon In, the next lowest rather like the 2s b<it with mixtures 

of the 2p   and hydrogen orbltals, and the two of higher energy are largely mide up of the 2pz 

and the hydrogen orbltals, though with some mixture of the 2s.    Of these last two, the highest, 

which is antlbonding.  has a node between the carbon and the hydrogens,  while the lower, 

which is bending,  does not.   In the determinants! function formed fiom the lowest molecular 

orbltals, we have six electrons occupying orbltals of this type of symmetry, filling all but the 

highest anu'-.oud<ng orbltals.   In the e*clt«d «.c:ifigurations which *v. sha'..l constctcr :.: this 
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section,  we shall assume that the two lower orbltals are occupied by two electrons each, at 

all times, but that the two upper orbltals can have varying number of electrons in them. 

Calculations of configuration interaction in water are being made by G.  F. Koster and 

H. C Schwelnler.* '   They are making the assumptions Just mentioned,  plus a further sim- 

plification:   they are assuming that the lowest molecular orbital is identical with the carbon 

Is orbital (which is probably justified),  and furthermore that the next molecular orbital is 

Identical with the carbon 2s, plus enough of the Is to make them orthogonal     This latter as- 

sumption is probably not very well justified, limiting the accuracy of Koster and Schweinler's 

results.   They would have had no more configurations if they had first determined the actual 

molecular orbitals; but this would have m«ant a good deal more work.    A still further,  and 

In this case quite large, increase in labor would have resulted if they had assumed that the 

2s-like molecular orbital was not always fully occupied with two electrons: in this case they 

would have had many mure coiuiguraiions to handle. 

Among the o* orbitals antisymmetric in the xz plane, we have just two, linear com- 

binations of the carbon 2p   and the difference of the two hydrogen Is orbltals.   The orbital 

with lower energy is bonding, and is occupied by two electrons in the molecular orbital ground 

•tate.   The higher one is antlbondlng.   In our configuration interaction, we allow any number 

of electrons, subject only to the exclusion principle, in these two orbitals.    Finally there is 

the single w orbital, identical with the carbon 2p ,  and occupied by two electrons in the mo- 

lecular orbital ground state: in our configuration interaction problem we allow any number of 

electrons In It. 

Our problem now is to count the number of interacting configurations which will lead 

to the ground state of the water molecule.   Wc &r« assuming that four of the ten electrons are 

permanently located in the two lowest molecular orbltals of the type symmetrical in both x 

and y (we may as well call this symmetry type gxgy. to have a simple notation).   The re- 

maining six electrons are distributed among the remaining two orbltals of type gxgy: the two 

orbltals of type g_u   (that is, even in x, an* hence a a orbital, but odd in y,  or in reflection 

in the xz plane): and the one » orbital,  which we could denote as u g , following the scheme 

just set up.   The symmetry of the wave function of the molecule is now of an extremely simple 

nature.   Like that of the molecular orb.^ls, tt must be either even or odd in reflection in the 

yx and xz planes, and we see at once that it will be even or odd on reflection in the yz plane 

according aa there are even or odd numbers of orbitals which have the symmetry u , and 

similarly for reflection in the xz plane.   We then can read the symmetry of the wave function 

off from the symmetries of the individual molecular orbitals straightforwardly, without any 

of the complications involved in the £* and £" state* which we met with oxygen. 

The molecular orbital ground state, having two electrons in each occupied orbital,  was 

2n.  F.  Ko»t*r and H. C- Schweinler. Solid-State a.;d Molecular Theory Gr-.-up,  M.I.T., 
Quarterly Progress Report, January 10,   1953 

! : 
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necessarily of symmetry gxRy.  so that we ask how to find all other configurations of thin 
symmetry,  assuming that they will lead tc the correct ground state of the molecule.    We shall 
have such a state if and only if there are an even number (4,  2,  cr 0) of electrons in the <?>g 
orbitals; an even number (4,  2, cr 0} in the g u ;  and an even number (2 or 0) in the u g . 
We then see ths* the ways of assigning the n.tmber of electrons to the various orbitals are 
given as in Table XII. 

Table XU 

Number of Electron Occupying Each Orbital in H,0 

of State Myl *x*y2 «xUyl «xuy2 V 
1 2 2 2 

2 2 2 1 1 

3 2 2 2 

4 2 2 2 

5 2 L 2 

6 i i 2 2 
7 2 2 2 

8 2 2 2 

9 2 1 1 2 
10 2 2 2 

11 1 1 2 2 

12 1 1 1 1 2 

13 1 I 2 2 

14 2 2 2 

15 2 1 1 2 

16 2 2 2 
17 2 2 2 

I 
s 
i 

Out of the states of Table- XII,  each of these which has 2 or zero electrons in each or- 
bital leads of course to a singlet state,  which in the only type -e are considering,  elncz the 
molecular orbital state, which is numbered 8 in our table, is of this type.   Each of those, 
like state 2 in the Table, which has two orbitals occupied by one electron each,  will of course 
lead to a spin degeneracy problem of two electrons, resulting in a singlet and triplet,  so that 
each of these will yield one singlet.    The one remaining state, numbered 12,  in which four 
orbitals are occupied by one electron each, will lead to a spin degeneracy problem of four 
electrons,  which as we know leads to a quintet, three triplets,  and two singlets.    Hence each 
of the states of Table XII except that numbered 12 will yield one singlet,  while number 12 will 
give two singlets,  resulting in 18 singlet states of symmetry g g^ for the molecule.    This 
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tell* us, ther.r  the numuer zi determinants which we mi:>l form,  and the order of the secular 

equation which we must solve, to get the ground state of the water molecule. 

The resulting wave "unction and energy levels will of course behave properly when we 

make any change In the nuclear positions, consistent with the assumed symmetry-   That is. 

we an change the angle between the OH bonds, as well as changing the OH distances, pro- 

vided only the distances from the oxygen to the two hydrogens remain equal*   If we wished to 

take up the more general problem in which the two OH distances were unequal, we should 

lose the »dvantages of our symmetry,  and should have a much more complicated secular 

equation to sclv; for the ground state.   Our resulting "'•ve function will behave properly in 

the limit of tnternuclear dlstancet that is, if both OH distance* approach infinity together, 

though remaining equal to each other, the wave function will reduce properly to an oxygen 
2     2    4 3 atom in its ground state.  Is 2s 2p     P, and to two hydrogen atoms.   These two atoms, in 

turn, provided they are far enough apart, will be in their ground state and unionized, but if 

they are close together, then, in principle, our solution should reduce to the solution of the 

hydrogen molecule problem taken up in Chapter 2.   We may notice that, even though we have 

pointed out that Koster and Schweinler have not used the correct molecular orbltals of the Is 

and 2s type, nevertheless their solutions will behave properly at Infinity, for at infinite in- 

ternuclear distances the molecular orbltals In question will reduce to exactly the carbon 

atomic orbltals. 

4. The Methane Molecule 

As an example of a molecule which is almost too complicated to solve by our present 

methods of configuration interaction, we shall work out methane,  and find the number of in- 

teracting configurations leading to the ground state.   Using the tame sort of methods which 

we have been describing for O, and water, we shau find that we need 104 interacting con- 

figurations to describe the pround state of methane, in such a way that when the hydrogen 

atoms are removed to Infinite distance, maintaining always the tetrahedral symmetry of the 
2     2     2 3 molecule,  we go properly to the limiting cround state of the carbon atom,   Is 2s 2p     P.  and 

to the ground states of the four neutral hydrogen atoms.   It is clear that this is. reaching the 

boundaries of what w« can hope to calculate by straightforward methods,  and we have reached 

these boundaries with a molecule as simple as methane.   With even slightly more compli- 
cated molecules, the stralghtforw ard application of the method of configuration interaction 

would become completely out of the question.   We brin; in methane at this point, principally 

to give emphasis to the statements made ai the end of the preceding section,  regarding the 

necessity of finding what terms are small enough to neglect, and of setting the calculations 

up in such form that we can conveniently neglect these small terms. 

Let us proceed to see how we find our 104 configurations for methane. In contrast to 

water, which was very simple, we have here *h? same sort of complications which we had in 

O,    In a sense,   only magnified to such an f *teni ih*,t ihc> m - a |-wu uv *i harder to handle, 
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ami we tthall have to build up considerably more machinery than we have used so far,  to take 

care of the analysis.    Tnere are a number of ways to count our configurations,  but the one 

which we slali adopt is suggested by the remark made at the end of Section 7.  Chapter 3, 

where we were discussing the nature of the molecular orbitals for methane.    **• pointed out 

there that the mexhane molecule had the same number of electrons as the neon atoms that the 

occupied orbitals in the ground state of the molecule were closely analogous to the Is,  2s, 

and 2p orbitals in the ground state of the neon atom; and that the excited molecular orbitals, 

which were unoccupied in the molecular orbital representation cf the ground state, were 

closely analogous to the 3s and 3p orbitals of the neon atom.    The configuration Interaction 

which we shall consider in the present section, then, in sUiiiltu lo what we should have in tiie neon 

atom if we allowed ar.y number of electrons from 1 to 8 to be excited from the 2s and 2p orbitals to the 

3s and 3p orbitals. This would obviously lead to a large number of configurations. Infact, witheight 

electrons to be distributed among 16 orbitals (functions of coordinate and spin), we can form 16! /8! 
8! • 12, 870 determinants. Of course, these determinants will include the wave functions of a great 

many different types of multiplets, so that we shall not have to solve s secular equation involving any - 

tMng like the total number of such function:. The ground state of a neon atom is a S configurations 

and a question much closer to the one which *e wish to ask la. how many  S states can be formed 

from al' the ways of exciting electrons from the 2s,  p orbitals to tne 3s,  p's?   This would 

tell us how many states combined to give the ground state,  since we should only have a secu- 

lar problem between states of the same type, in this case   S's.   The number of such   S states 

is in fact of the order of magnitude of our final answer 104, but it is not equal to it.   There 

are several features in which our pr» '- -—• is not equivalent to the neon problem, and we must 

examine them in detail before we can carry out our counting of configurations correctly. 

In the first place, even if we were dealing precisely with the neon problem, it would 

not be correct to count all   S states zrji to say that they COULM all interact with each other. 

The reason arises from the parity of the states of the atom.   The parity of an atomic state is 

defined to be even If the sum cf the t values of all electrons in the configuration is even, and 

odd if the sum of 1 values is odd.    Thu& for a single electron, the S, D,  etc.,  states have 

even parity, while the P,  F,  etc.,  are eld.    Odd parity is generally indicated by a super- 

script o after the symbol of the term,  even partly by omitting the superscript,  so that we 

should write the states of a one-electron atom as   S,     F°,     Z>,    7°,  etc.    We now notice that 

in complex spectra it is possible to have states of the same L value,  but of different parity. 

Thus for instance the interaction of two p electrons in a two-electron atom will lesd to S,  P, 

and D states, all of even parity,  since each uf the electrons has  1*1.    This shows thai we 

can have a P state of even parity.    Similarly the interaction of three p elect rens will »ead to 

S,  P,  D.  snd F states   all of odd parity.    These examples will be enough to show the reader 

that in addition to   S levels, like the ground state of neon,  we also have   S° levels,  of odd 

parity, arising from some of the configurations obtained when some of the 2s,  p electrons 

are excited to 3s, p states.    'Se shall now show that the energy has no nor-diagonal matrix 
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tied to change It to the cylindrical symmetry characteristic of a linear molecule,  the S wave 

function will be obviously modified Into a £    wave function,  which Is Independent of rotation 

about the axis of the molecule and unchanged on reflection In a plane passing through the axis, 

whereas an S° wave function will be modified into a Y~.  still unchanged on rotation about the 

axis,  but changing sign on reflection.   This is not the only way we can generate Y    and   ]T~ 
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components between a state of even and z. state of odd parity.    Hence to find the number of 

configurations of the neon atom which interact to form the ground state,  we must count only 

the   ? levels arising from all the configurations,  omitting the   S° configurations. 

The reason why the parity is important is that it is connected with a symmetry opera- 

tor which we have for a single atom or a central field, the operation of inversion, by which 

x, y,  7. is transformed into - x,   - y,   - z.   This operation commutes with the Hamiltonian, 

and with all rotations,  and hence will Ivave a diagonal matrix.    Since the repetition of the op- 

eration twice in succession yield; the Identity, its eigenvalues must bet 1.   Now we verify 

immediately, by inspecting the one-electron wave functions, that the spherical harmonics 

corresponding to even  I values are unchanged when we perform the inversion, and those 

corresponding to odd 1 values change sign.    Thus a one-electron wave function of even parity 

is unchanged under an Inversion, while one of odd parity changes sign under an inversion. 

When we build up a wave function for a many-electron atom, it is clear that under an inver- 

sion each one-electron function with even i will be unchanged, while each orbital with odd 

i will ch?p.ge sign.   Thus the deter rmnantal wave Junction, involving products of one-electron 

orbitals for each electron, will change sign or not under an inversion, depending on whether 

the parity is odd or even.    Our general theorems about symmetry operators, then, will tell 

us that there can be no non-diagonal matrix components of energy between two states of dif- 

ferent parity. 

We may remark parenthetically that our operation of inversion Is closely related to 

reflection, and our two types of symmetry, the S and S°, are closely related to the £   end 

£" which we met with the linear molecules.   In the first place, rotation of 180° about a given 

axis, followed by inversion about a point on that axis, Is equivalent to reflection in the plane 

passing through the point of inversion, perpendicular to the axis ol rotation.   Thus for in- 

stance rotation of 180° about the x axis transforms x, y,  z into x,   - y,  - z.   Inversion trans- 

form* this to - x, y,  z, which is equivalent to reflection in the plane x • 0.   Thus all the 

symmetry operations which we have described up to now in terms of reflections can equally 

well be described in terms of inversions and rotations.   Sometimes one method of descrip- 

tion Is more convenient,  sometimes the other.    Now let us consider our S and S° types of 

states.   The characteristic of an S state is that its wave function is unchanged when any ro- 

tation is perfoimed,  and likewise is unchanged vr/ler inversion.    In an S° state,  on the other 

hand, there is no change under any rotation,  out the function changes sign under inversion. 

We see, then, that an S state will be unchanged when we reflect in a plane passing through 

the nucleus,  whereas an S° state will change sign.   If now the spherical symmetry is modl- 
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field of tetrahedral symmetry on a single electron which originally was in a spherical field. 

This is essentially equivalent to the discussion of molecular orbltals in the tetrahedral field 

In methane, which w* have already taken up in Chapter 3}  only now we must extend it to 

higher multlpVt".  •>.*>* »?»•!•• -- more systematic about our discussion.    Let us ctart with an 

atomic state of a given i value.    We know that we have Zt +  1 separate wave functions, de- 

generate with each other,  corresponding to the different in*   values from 1 to - I. to repre- 

Dr. G. F- Koster has carried iurcugh this discussion, leading to the results to be described 
in this section.    I am much indebted to Dr. poster for valuable discussion regarding the 
problem. 
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states out of atomic states by changing the spherical symmetry to cylindrical, but it will il- 

lustrate the close relationship between, parity and the £    states.    We note,  ci course,  that 
for a linear molecule which does not have a center of syrmn»»tT-y.  inversion by itself is not a 

symmetry operator,  so that the pority is not a quantity which has significance in the wave 

function of such a molecule. 

We now understand that In the problem of the neon atmr.;  we find the number of con- 

figurations interacting to form the ground state by counting the number of   S states (omitting 

the   S°'s).    We shall see later that there ar*» 60 such states arising from the configurations 

we are considering.   Now we must ask, however, what are the differences between the neon 

atom and the tetrahedral methane molecule,  in the matter of the symmetry of the states. 

The two problems resemble each other, but are tzr from identical.    Let us consider just how 

we can pass continuously from one problem to the other, so that we can use the machinery of 

the vector model of the atom,  which gives us an easy way to count configurations in the neon 
i 

atom, to give corresponding information for the methane molecule.   We may proceed as we 

have done earlier, in similar problems.   We start with the neon atom, then allow the hydro- 

gen nuclei to move slowly away from the carbon nucleus in the tetrahedral directions, until 

they reach their proper positions for the molecule.   In other words, starting with the spheri- 

cally symmetrical problem,  we introduce a perturbation of tetrahedral symmetry.    This per- 

turbation will split the energy levels of the atom, so that each of the perturbed energy levels 

will have the characteristic behavior of the tetrahedral symmetry.   Once the levels are split, 

or the degeneracy inherent in the spherical problem is removed, we may count the number of 

configurations of any type, and it will not change as the magnitude of the perturbation in- 

creases.   In other words, if we start with the spherical problem,  and introduce an infinitesi- 

mal tetrahedral perturbation, and see how it splits the multlplets of the atom, we can get our 

complete answer as to the number of types of multlplets of each ajiimiciry in the methane 

problem. 

The complete discussion of the effect of the tetrahedral perturbation on the multlplets 

Is best given by the group theory. * ' However, we can outline these results, and make them 

plausible, by elementary methods.   We shall start by considering the effect of an applied 
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aent thia multipiet.    For i - 0,   1,  I,  3,  4,  which are the only cases we prove to need In our 

discussion of methane,   we give the angulnr dependence of these wave functions in Table XU1. 

The functions •s'hich we have tabulated are r* tirr.es the spherical harmonics of angle:  and 

the angles are expressed in terms of cartesian coordinates x, y,  z. using the relations x r. 

r sin 8 <os <ft  y = r sin 6 sin •,  z  a r cos 6,  which express the spherical polar coordinates. 

In other words, our functions are polynomials, which are solutions of Laplace's equation. 

We have not bothered to normalize these functions. 

Table XIII 

Spherical Harmonics Times r   fcr I = 0,   1,  2,  3,  4 

1 = 0:   1 

1» 1. mjL * t 1, x t iy 

mi   = 0,  z 

2 2 1 * 2, m,   = t 2,  x    - y    t 2lxy 

mt - t 1,  z(x t iy) 

mt = 0, r2 - 3z2 

1 - 3,  mt = t 3,  x(x2 - 3y2) t iy(3x2 - y2) 

m^ » t 2,  z(x~ - y~) t 2lxyz 

mt = t 1,  x(r2 - 5z2) t ly(r* - 5z2) 

mj = C,  z(3r2 - 5z2) 

I « 4,  m, » • 4,  x4  - 6*V + y4 t 4Uy(x2 - y2) 

m( = t 3,  xz(x2 - 3y2) t iyz(3x2 - y2) 

mi = t 2,   (x2 - y2)(r2 - 7z2) t 2ixy(r2 - 7z2) 

mj   - t 1,  xz(3r2 - 7z2) t lyz(3r2 - 7K2) 

mt  x 0.  r4 - 10r2z2 +• ^ z4 jl 

We now start with any one of these |   values,   and consider the 21  •   1 wave functions 
j! 

associated with it.    A spherically symmetrical potential will have no non-diagonal matrix 

components of energy between two such wave functions,  but a telrahedral perturbation will 

have such components.   Our object is to find suitable combinations of the wave function* as- 

sociated with different m.   values, but the same   I,  such that the tetrahedral perturbation 

will have no non-diagonal matrix components between these linear combinations.    From our 

previous work,  we know that we can greatly diminish the labor of solving the resulting secu- 

lar equation If we con«=ider all »he symmetry operr.*ions characteristic of the tetrahedral 

structure,   »ud if we start by mailing symmetry orbttels,  linear combinations o." the functions 
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of different m.   value,  which diigonallze as many of these symmetry operators as pcr-sible. 

We shall find that in the cases we are considering,   this procedure will give us a complete 

solution of the problem,   without having to use the secular equation for energy at all. 

Let us first remind ourselves of what the symmetry operators are for the tetrahedral , 

molecule; we shall be a little more complete and systematic in tabulating them than we were 
lu Citttfici- 3.    Fir»i,   we can rotate through 180    about any ore of the three two-fold axes 

given by the x, y, and z axes in Fig.  5.    Secondly,  we can rotate through t 120   about any 

one of the four three-fold axes indicated by 1,  2,   3,  4 in via   6.    Tb*>n there are two types 

of reflection symmetry,  which we did r.ot stress in Chapter 3,  since we did not need to use 

them at that time.   We en re*!sc> ;•< on* of the pianes like x - C.  and then rotate through 

t 90   about the corresponding axis like the x axis; this is an operation which we did not men- 
tion in C hapter 3.    It can *qnally v/cll be witi i'ued as inversion,  followed by rotation of t 90~ 

about ths axes like the x axis.   Fourth and last, we can reflect in one of the six planes x = 

* y, y a t z, z » t x.    These reflections were mentioned, but not used,  in Chapter 3.    They 

can alternatively be describe «« . oUtlu.is of 180   through any one of the six axes like x « 

t y,  z  * o (that is,  ihe axis represented by the bisector of the angle between x and y axes), 

followed by an inversion.   To make everything clear, we give in Table XIV the complete de- 

scription of each of these types of symmetry operations, by showing the values into which 

the coordinates x, y,  s are transformed by the various operations. 

Table XTV 
1 

Transformed Values of Coordinates x, y,  z, Under 
the Symmetry Operations of the Tetrahedron 

Identity: (x, y, z) 

Class I: (x, -y, -z), (-x,y, -z), (-x, -y, z) 

Class II: (y, z, x), (z, x, y),  (-y,-z, x),  (-z, x,-y),  (y, -z, -x),  (-z, -x, y).  f-y. z.-x).  (z, -x, -y) 

Class HI: (-x,-z,y),  (-x, z,-y), (-z,-y, x), (z,-y,-x), (y, -x, -z),  (-y,-x, z) 

Class IV: (x, z, y), (x, -z, -y),  (z.y, x), (-z,y, -x),  (y, x, z),  (-y, -x; z) 

From Table XIV,  we see that, including the IdenMty,  there are twenty-four independ- 

ent symmetry operations for the tetrah*dron.    We can check immediately that this must be 

the correct number, by considering the geometry of the tetrahedron, us shown in Fig.  5. 

Let us consider a point in space, represented by the coordinates x,  y,  z,  and see how many 

other points must have the same potential, according to the tetrahedral symmetry.    Thus for 

convenience let this point be located on the from face of the <ubc- in Fig.  5,  or on the face 

perpendicular to the x axis,  and let it be fairly close to the atom 1.    As we look at Fig.  5, 

we see that there must be another equivalent point in this same face,  the mirror im«ge of the 

first point in the line   joining atoms 1 and 2.    Similarly there must be two other points in the 

same fr.ee,  located in equivalent positions with rws^e^l to atom 2.    Thus in this face there 
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are lour points wi«.h equal potentials.    Each of the other faces of the cube will likewise have 

four points equirJent to these,  50 that with the olx faces,  we have twenty-four points in all. 

The coordinates of these points, are precisely those gi«en ir- TaMr XTV.    For future reference, 

we may note thi* if »e were dealing with cubic »ymnietry rath-r than tetrahedral,  so that we 

h?rf atoms at all eight rnrr.»r« rt ihn r»h» it, Fig.  5. th*r* would be twice as many points of 

equivalent potential; thus in the front face of the cube we should have points similarly located 

with respect to. all four corners of the cube, rather than just near the points labelled 1 and 2 

in Fig.  5.   We should then have 48 equivalent points in all,  and there are in fact 48 symmetry 

operations characterizing the cubic symmetry.   The first step in discussing the symmetry 

operations of any problem according to the group theory is identical with what we have just 

done in Table XIV, to make a complete table of all the symm«try operations,  and to find how 
*u«nj iwix are. 

Let us now proceed, by inspection, to try to set up combinations of our spherical har- 

monics corresponding to different m.  values, but the same 1, from Table XIII, which dl- 

agonallze the symmetry operations of Table XTV as far as possible.   First we remind our- 

selves of wha'; we did in Chapter 3.   There we were interested only in s and p electrons, so 

that we had to consider only i a 0 and 1.   For an s electron, the problem is trivial:   +he 

wave function is independent of angle, and transforms into itself under any of the 24 symmetry 

operations.   For a p electron, the problem is not so trivial.   We have to make combinations 

of the functions x t ly and s from Table XIII.   We remember, from our discussion of Chap- 

ter 3, that the symmetry operations of Type I, the two-fold rotations, do not commute witl' 

the operations of the other types, so that we cannot simultaneously diagonallse them.   We de- 

cided to dlagonalize the operations of Type I.   To  do this,   we saw by inspection that we 

wanted the three functions x, y,  z:  which are obviously linear combinations of the three 

giver in Table XIII.   That is,   remembering that the real orbltals are of the form x, y, 

or z times a function of r,   which we called p , p , p , the ihree correct functions are x    y_   * 
p„, p . p, themselves.   By inspection of Table "3V,   we then see that p„ is transformed x      y      z x 
into itself by the first operaUon of Typ: I, into -is negative by the secord and third operations 

of Type I, ir.to p    by the first oper«tiuu ul Type ii, p   Dy iiia second,  - p   by the tntra. and y z y 
so on;  Into - px by the first two operations of Type HI,  - pz by the third, p   by the fourth}  and 

so on.   In other words,  z.s we expected,  the upci atloiia of Type I have diagonal matrices with 

respect to these three functions p .  p. p , but the other operations do not. x     y     z 
Now let us approach a problem which we have not so far had to consider, the d elec- 

tron, with I « 2.   If we Inspect Table XIII,   we see that all five spherical harmonics for this 
2        2      2 2 I value can be written in terms of the live quantities x   - y , r       3* , yz, zx,  and xy.   Let 

us now ask whai effect our .24 symmetry operations have on these five functions,  finding the 

matrix components of our symmetry operations, to see to what extent these symmetry opera- 

tions arr already dlagcnMtzed.   The operations of Class I are already dlsgcnslizcd,  as we ••• 

at once;   the first two functions transform into themselves,  and the last three transform into 
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t themselves.   But now we observe a further thing,  when we examine the other types of sym- 

metry operations.    Wfi fir.d thai the •h»*»,e function* yr.   zx,  and xy transform Into themselves 

or each other under each of the symmetry operations: they never transform into the ether 
2       2     2 2 functions x    - y ,  r    - 3z  .    Similarly these latter t*o functions do not transform into yz, 

zx,  or xy.    In other words, there are no non-diagonal matrix components of any of the sym- 

metry operators between any function of the set yz. zx,  xy,  and either of the two in the set 

x   - y , r    - 3z .    In the language of the group theory, the two sets of functions yz,  zx, xy 
2       2      2 2 and x    - y ,  r    - 3z , form bases of two different irreducible representations of the tetra- 

hedral group.   By this we mean that no symmetry operations of the group have non-diagonal 

matrix components between the wave functions corresponding to two different irreducible 

representations: but that on the otaer hand it Is impossible, by making linear combinations 

of the wave functions within one Irreducible representations, to break it down Into even 

smaller sets of wave functions between which there are no non-diagonal matrix components. 

If such reduction were possible, wc should hrve a reducible representation.    For instance, 

the five functions corresponding to m.  • t 2, t 1, 0 for I = 2, from Table Xin.  with which 

we started, form a basis for a reducible representation of the tetrahedral group, since we 

can make the linear combinations we have been discussing in this paragraph, and form two 

irreducible representations from them.   No such further reduction Is possible. 

The importance of irreducible representations arises from the fact that there are no 

non-diagonal matrix components of energy between wave functions belonging to two different 

Irreducible representations.   In other words, once we have set up linear combinations of our 

orbttals belonging to irreducible representations, we have automatically gone as far as we 

can in dlagonalizlng the energy, by use of the symmetry operators alone.   A further property 

of the wave functions belonging to a single irreducible representation is that when we have 

dlagonallzed the energy completely, we shall find that the diagonal energies associated with 

the different wave functions contained in the same irreducible representation are equal to 

each other,  or that we have degeneracy.   In other words, the set of wave functions associated 

with a single Irreducible representation plays the same role in a symmetry problem uf a • j 

molecule which the set of wave functions associated with i single I  value does in the problem 

of atomic multiplets.   In fact, the set of 21 +  l wave functions corresponding to the different 

m. values, for the problem of spherical symmetry, as given in Table XIII, forms the basis 

for an irreducible representation for that type of symmetry. 

The number of separate wave functions contained in the basis for a given irreducible 

representation lb known as the dimensionality of that irreducible representation.   The matri- 

ces of the various symmetry operator* have a number of rows and columns equal to this di- 

mensionality, provided we are asking how these symmetry operators transform one of the 

wave functions contained in the basis for a given irreducible representation Into the other 

functions in this same '->a»ln.    We may have irreducible: rrpi-esentfit'.ons of m»ny dlffersrt di- 

mensionalities for trte same ?roup of symmetry operations.   Thus for **<• «nh«»ri-a) symmevy, 
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we ha.-t irreducible representations of dimensionality it  *•  1,  where I can be any integer, 
as we have just seen.    In the tetrahedral group,  we have found three dLmenslonalltles so far. 
The s-like wave function transformed into iiself order all symmetry operations-    It therefore 
forms a one-dimensional representation,  all by itr-lf     The three functions x, y,  z,  or p 
p . p ,  form the basis for a three-dimensional representation.   The two functions x    - y*\ 
r* - 3z*. form the basis for a two-dimensional representation.    Finally,  the three functions 
yz,  zx,  xy, form the basis for a three-dimensional representation. 

We have stated without proof two properties of Irreducible representations:   that the 
energy has no non-diagonal matrix components between wave functions belonging to two dif- 
ferent irreducible representations, and tl.«t when the energy is diagonallzed, the states 
formed from a single irreducible representation ore degenerate with each other.    Let us see 
bow we prove these properties.    For the general proofs,  we should us? the group th»«ry. 
We can, however, carry out perfectly satisfactory proofs in each special crse, from sym- 
metry properties.   Thus let u j belong to one irreducible representation, u, to another.   We 
wish to prove that  / u.* Hu, dv = 0.   Surely the integral,  which we may call H.,» will be 
unchsr-£*d If we perform one of our symmetry operations on the coordinates appearing In u,, 
H, and u,, for this merely changes the names of the variables of integration.   This sym- 
metry operation will leave H unchanged, by the £ur<damental nature of the symmetry opera- 
tions, but it will make changer, in u. and ti, which will be of different types.    For illustration, 
suppose u. belongs to the one-dimensional representation of the tetrahedral group, so that it 
is unchanged under any oi' the operations of the group.   Suppose that u, for example is p . 
Let us consider the operation which changes x, y,   : into -z, y,  -z.   This will leave u, un- 
changed, but will change p   into its negative.   Thus it will transform M12 into Its negative. 
But we have also seen that it mutt leave H., unchanged.   Hence H.2 must be zero.   By in- 
spection, we can see that similar proofs can be given showing that mere are no non-diagonal 
matrix romponentr of energy between our one-dimensional, our two-dimensional,  and our 
three-dimensional representations of the tetrahedral group. 

When we corae to consider our two three-dlmens'.onil representations, however, for , 
I 

which the functions x, y, z,  and yz,  z\,  xy form bases,  we see that the situation is quite dif- 
ferent.   If we examine how the three functions x, y,  z translorm into each other under the 24 
operations of the tetrahedral group,  and than ask hew the three functions yz,  zx,  xy trans- 
form into each other, we find that they transform In exactly Identical ways.   Thus the opera- 
tion which transforms s. y, z late s,  -y,  - z transform the function x into itseif,  and like- 
wise it transforms yz Into itself j  aud so on for all the rest.   Two sets of functions which 
transform into each other i« identical ways, under ail operations of the group are considered 
to form two different bases for the tame Irreducible representation.    We see at onc.m that our 
proof that the non-diagonal matrix component oi energy is zero between functions belonging 
to two Irreducible representations breaks down if we have two sets of functions, like the 
present ones, which transform in Identical ways: for then the two functions Uj und u2 wiil 
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transform lit identical ways,  and we cannot find any avmmetry operator,  as In the last para- 

graph,   which will change the matrix component H., Into its negative.   In other words, there 

is no reason why there should net be non-diagonal matrix components of energy between a 

set of functions like x, y, z ana a set like yx, ax, xy.   As far a* symmetry is concerned, 

they belong to an identical type of behavior. 

We have now to interpret the statement that there arc no non-diagonal matrix com- 

ponents of energy between wave functions belonging to two different irreducible representa- 

tions.   Let us next examine the degeneracy of the states included in ? single irreducible rep- 

resentation.   Let u« »«sune that we have diagonalized the energy betveen these wave func- 

tions.   Then we know that there must be some of the symmetry operat ars which have non- 

diagonal matrix components between different wave functions of our set, for we know by the 

fact that we are dealing with an Irreducible representation that there 1.-. Zu possible linear 

transformation which will dlagonallze all the symmetry operators.   Let us then take two of 

the wave functions, say i and j, out of the set of linear combinations which diagonal lie the 

energy.   Let the diagonal matrix components of energy of these two states be E. and E .   Let 

us take a symmetry operator F which has a non-vanishing matrix component F, • between 

these two states.   Let us then write the ij component of the matrix equation HF - FH « 0, 

expressing the fact that F and the energy commute with each other.   This contains only one 

term, (E. - E.) F.- = 0.   Since by hypothesis F^ i 0, we must have E. • £,. or the states 

are degenerate, M we have Indicated above. 

Now let us see where we stand with our problem.   We have found three different ir- 

reducible representations of the tetrahedral group, a one-dimensional one which Is unchanged 

under all operations of the group, a two-dimensional one for which a basis consists of the 

two functions x   - y   and r    - 3z   (we have not examined how these transform into linear 

combinations si' each other under the operations of the group, but it is easy to do to), and a 

three-dimensional one of which we have given two possible bases,  the three functions x, y, 

c, or the three functions yz, zx, xy.   We have shown that under a tev.rah«4ral perturb^'.-.-., 

an S state is not split up, but remains as a one-dimensional representation of the tetrahedral 

group.   A P state becomes a three -dimensional representation of the tetrahedral group, and 

leads to a three-fold degenerate state, so that It likewise la not split by the tetrahedral per- 

turbation.    With the D state, .~" e'er,  the situation is quite different.   The three-dimen- 

sional Irreducible representation containing the three functions yz, zx, xy will lead to a 

three-fold degenerate level of the same symmetry as that arising from the P state, but the 

two-dimensional representation will be expected to result in a two-fold degenerate level hav- 

ing a different energy.   We can see immediately from the aature of the wave functions why 

we expect the energy to be different for tiesc two duxtrc^t *.y-?z ?f representations.   The 

four hydrogen atoms in methane lie at points x«y»z«a,x«-y«-x««,   - x - y  - 

'—.•*•*.,  and - x » - y » z  - a.   At the position* ox *he hydrogen*,  each one of the functions 

like yx, zx, xy will be ta :  thu* the function yz equals a   at atoms 1 and 2,   • a   at 3   and 4. 
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On the other hmnd, the functions x    - y   and r    - iz   are both zero at all nydrogens.   It is 

obvious, then, that the presence of the hydrogens wi)l perturb these two types of wave func- 

tion In quite different ways. 

We have new gone far enough with our* general understanding cf fha problem so that 

we can go on with thu cases 1=3 and 1=4.    If we examine the wave functions for 1-3. 

we find that they can all be written as linear combinations of the following seven functions: 

xyz 

x(3r2 - 5*2),  y<3r2 -,5y*),   z(3r2 - 5s*) . 

«(y* - *2). y(*2 - x2). Ax2 - y2) . 

The first of these, we find, transforms into Itself under any of the 24 operations of the group. 

Thus It belongs to the same one-dimensional irreducible representation of the group as the s 

function.   The next three transform into each other precisely like the functions x, y,  z,  ur»- 

der ail operations of the group, and hence belong to the same three-dimensional irreducible 

representation which we have already found.   The last three, however, are different.   They 

form a basis for another three-dimensional irreducible representation, of different type from 

the one we have already considered.    They transform in the some way AS X, y, 2. under all 

rotations, but under the symmetry operations involving inversion or reflection, they trans- 

form to the negative of what the functions of the other irreducible representation would do. 

Thus under the operation of Class IV, in Table XIV, in which x, y, z transforms into x, z, y, 
2 2 2       2 the function x(3r   - 5x ) transforms into itself, just as x does, but x(y   - z ) transforms in- 

to the negative of Itself.   We see, then, that the seven sub-levels of an F state, with I = 3, 

split inio ihree levels under a tetrahedral perturbation:   a non-degenerate one transforming 

like an s state, a three-fold degenerate state transforming like a p state, and a second 

three-fold degenerate state transforming in this new way. 

Similarly for 1 = 4 we find that we can write all of our functions in terms of the fol- 

lowing nine: 
444 ? 7 ?? ?2 

x   + y   * z    - 3x"y" - 3y z    - 3z x 

4       4     6.2       2,    2      4     1,4^    4.     6f2     1,2,    23    2 
*   - y   " 7<x    " y ) r ,  z    -j(x   • y ) - - [z    - ^(x   + y J| r 

yz(7x2 - r2), zx(7y2 - r2), xy(7z2 - r2) 

ys(y2 - z2). tx(*2 - x2). xy(x2 - y2) . 

These functions, including a number of others of higher 1 valuo*.  au-e given by F. C. von 
der Lage and H. A. 5«iue, Fhyu. Rev. 71, 612 (1947), In connection with a discussion of 
symmetry properties of ruble crystals. ~The cub', symmetry group is so si-.iUu- to the 
tetrahedra) group thai the same types of combinations of wave functions appear in both. 

Of these functions,'  ' the first transforms like our one-dimensional irreducible representa- 

tion, transforming Into Itself under any one of the symmetry operations.    The next two trans- 
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form like the functions x    - y , z    - l/2(x   • y ) (which is proportional to r    - 3z ), of our 
two-dimensional representation.    The next three transform like our three-dimensional rep- 
resentation transforming like x, y.   z, and the last three transform like the other type of 
three-din»»n*tonal representation, or like x(y    - z"). y(z    - x ),  z(x    - y ).   Thua we have 
no new types of irreducible representations appearing in the F states. 

Wc Can snow, as a matter of fact, by general methods of the group theory, that there 
are only five possible irreducible representations of the tetrahedral group,  of which we have 
already found examples of four.   The remaining one is a one-dimensional representation, 
which occurs for the first time for  1=6, for which the appropriate wave function is x (y    - 
s ) + y (z    - x ) • z (x~ - y )•   This wave functions transforms into itself under all those 
symmetry operations, of Types I and ll, Table XIV, which involve only rotations: but it 
transforms into its negative under the operations of Types III and IV, which Involve inver- 
sion as well. 

The general theorem of the group theory, which leads to the information that these 
five Irreducible representations are the only possible ones, is useful and simple in its state- 
ment, though we shall not go into its proof. " ' In the first place, it states that the number of 
irreducible representations for any group of operations equals in* number of classes of sym- 
metry operations. Classes of symmetry operations are defined in a precise way by the 
methods of group theory, but Uiejr auuouni to just what we have denoted by the various classes 
in our Table XIV.   There we mentioned the operations of Classes I, II, III, and IV among the 
24 symmetry operations of our tetrahedral group: the identity operation, which was not in- 

i 

ciuaed in any of these four classes, forms a class by itself, so that we have five classes and 
the general theorem states that we must have five irreducible representations.   Another 
closely related theorem tells us the dimensionality of each of these irreducible representa- 
tions.   This states that the sum of the squares of the dimensionalities of all irreducible rep- 
resentations equals the number of symmetry operations in the group.   In our case, where 
there are five irreducible representations, and 24 symmetry operations, the sum of the 
squares of the dimensionalities must equal 24=   The only integers which cs.". citizfy *.:.--- 
conditions are 1,  1,  2,  3.  3, which satisfy the equation 1+1   • 2   + 32 • 3    • 24.   These 
simple but powerful theorems thus allow us at once to predict the number and dimensionalities 
of the irreducible representations which we find in the preser-t case. 

It is now convenient to nave a notation for our five types of irreducible representation. |   , 
It is customary to denote irreducible representations by the- symbol p, with a subscript to 
number the individual representation (the subscripts will be different, therefore, for differ- 
ent types of symmetry).   Let us number th» "ve representations in order of increasing di- 
mensionality.   Thus we shall denote the irreducible representation with transformation like 

Vor a proof,  see for example Eyring,  Waiter, and Kimball, Quantum Chemistry (John 
Wlisy ana Sorts, i-<c.) I'M*. 

.      ! 
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an s function,  which goes Into Itself under any of the symmetry operations,  by   T ..    The 
4    2        2 4    2        2. other one-dimensional representation,  with transformation like x (y" - z") + y (z* - x  ) • 

z (*    - y )•  WU1 be denoted by T,,    The two dimensional representation,  representing the 
** 2 2 2 2 2 22 

transformation of two function* like x    - y    and r    - 3z    (or *    - l/*(x   + y  )) respectively, 

will be called T -.    The three-dimensional representation whose bio Is consists of three func- 

tions transforming like x, y,  z will be called I\,  and the other three-dimensional repre- 

sentation involving three functions transforming like x(y    - z ), y(z    - x ),  z(x    - y ),  will 

be called T.. 

In terms of this notation, we cen systematize what we have found.   Remembering the 

parity of the one-electron.prsblem,  w<: have found that under a tetrahedral perturbation,  an 

atomic S state becomes a I\ state of the tetrahedral symmetry.   An atomic P   becomes a 

I\ state.   An atomic D splits into a doubly degenerate   F   state,  and a triply degenerate 

TA-   An atomic F° splits Into a   Tv  a   P4. and a Ty   Finally,  an atomic G state splits into 

a  r.>  a 1%.  a I\,.  and a Tc>   We have proved these results only for a one-electron problem. 

However, the symmetry properties are not at all dopendent on having one-electron problems. 

We have already pointed out that the wave function of a whole atom or molecule has exactly 

the rune symmetry operations as that of a one-electron problem.   Thus any atomic multiplet, 

no matter of how complicated an atom, w-11 split in the same way, provided it has the same 

L value, and the same parity.   We have got complete information, in other words,  about the 

S, D. and G states of even parity, and the P and F states of odd parity.   It still remains to 

investigate the S, D, and G states of odd parity, and the P and F of even parity. 

We cannot investigate these other states by considering one-electron problems.   Thus. 

it is more complicated to handle them by inspection, thr ugh we can do it by considering two- 

and three-electron spectra.   By the general methods cf group theory, Kostcr has shown that 

an S   state goes over into one of symmetry F, under a tetrahedral perturbation,  a P into a 

T5, a D° into T3 and T5. an V into rz. T4.  and  T5, and a G° into T2>   T3,   I\. and iy   We 
thall sot check all these results, but we css> easily show how they come about by on^ or two 

examples.    Thus the simplest several-electron problem which leads to an S° state is that of 

three p electrons.    If we have three equivalent p electrons,   we remember that we have the 

multlplets   P°,    D°,    S°.   We can get the orbital dependence of the S° wave function. In 

which we are interested, by netting up the single determinantal wave function corresponding 

to a component of spin along the axis of 3/2 units, or the cess ii> which all three electrons 

have the same spin,  and hence must have different orbital functions.   If we put one in the p 

state, one in p , one in p , the wave function will be the determinant 

px(l) PXU) Px0) 

Py0> P7W Pv(3) 

p,«») P.(2) PB(D| 

i 

! 
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which equals rji) py(2) p,(3) • ?v(l) p.^2) px(3) + pz(l) Pj((2) Py(3)  - px(l) py(2) Pjc(3)  - 
P  (1) P,(2) P„(3)   - P„0) P (2) p_(3).    We readily find ihaf this function transforms according x z y y x        z 
to the rc^rc£c>ii«iicu I\ under all the symmetry operations.    Thus a syuimeU-y operation of 
Type I,  in which Xj, jy  z., x,.  /2,  *2' x3* ?y  rj transform 'nto x,.   - y^,   - *,,  x,,   - y_, 
- z,, x,,   - y,,   - zv  so that eacn p   transforms into itself,  each p   and p   into its negative. 
cle*irly leaves ihe wave function unchanged.   Similarly the cyclic permutations Involved in 
the operators of Type U leave the function unchanged.    On the other hand, the operators of 
Type III and Type IV change its sign,  as we see immediately by insepctlon. 

In a similar way,  we can check the fact that a P state transforms like I\.   The sim- 
plest case where such a state occurs is in the problem of two equivalent p electrons, leading 
to   S,    D,    P.   Here again we can get the orbital dependence of the P state from the sub- 
level of maximum component of spin along the axis.   New we can set up three determinants. 
one formed by putting the two electrons intc p   and p   states, cr.c by putting them Into p   and 

y * z 

P„. and one by putting them Into p   and p .   The first of these leads to the function p (1) 
p (2) - P_(l) Pv(2), and the other two follow from this by cyclte permutation. We readily 
verify that these three functions transform Into each other like T,. We can check the re- 
mainder of the table la similar ways. 

We have now completed our task of investigating the effect of a tetrahedral perturba- 
tion on the various types of multiplets of an atom, up to i = 4.   Let us then remember why 
we have been doing this.   We want to be able to find all the states which combine to form the 
grcund state of the methane molecule, with Its tetrahedral syrr.a>^*ry.   This ground state has 
the t.-like symmetry resulting from an S state of the neon atom, as modified by the tetra- 

i _ i 
hedral field.   That Is,  as we now knew. It is a   1 , state.    We now see that each   S state of 

i * 
the atom will result In such a   F • state, but that we also • ive such states arising from other 
atomic multiplets.   In particular,  each   F° atomic state,  and each   G level, will also lead 
to a »t»t« of the same symmetry.   We can get our desired number of combining Ptates, then, 
by setting up all the atomic levels arising fror. the various configurations which we are con- 
sidering, and counting the number of   S,    F°,  and   G levels arising from them.   When we 
do this,  we find 60 *S levels,  32 lF°'s.  and 12 lQ'-i, a total of 104 levels, which Is the de- i  ! 
sired number.    We see that the effect of Imposing the tetrahedral perturbation on the ori- 
ginal spherical symmetry has been to lncree.se lh<! number of combining levals from the 60 ;   , 
l ! 
S levels which we should have in Ne, to this larger number 104.   This, is the sort of thing 

which we should expect:   decreasing the symmetry of a problem by a perturbation always 
tends to make th» factoring of the secular equation on account of symmetry less effective, 
increasing the  number of combining states.   Ti.e limiting ca&e, of course, comes when '.he 
symmetry is completely lost, r. limiting case where the only remaining factoring cooirs from 
the spin degeneracy. 

To clwify for the reader the method of counting the ccnflfjratioRa,  **e ff*ve in Table 
XV the r-.iirr.btr of multiplets of the desired type arising from ea<-h of the a'om.'c configurations 
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Tsble XV 

Number o*   S, F°,   and   O Levels in Confix 

Configuration No.  of *S              No.  of 1F° 

2822p6 1 

2s22p53p 

2s2p63s 

2a22p43s2 

2a22p*3s3p 

2s22p43p2 

1 

2s2p53s3p 

2s2p53p2 

2pS.2 

2P63P2 

i 

2     3     2 
2a 2p 3s*3p 

2a 2p~3sip 

2s22p33p3 

3 

2s2p43s23p j 

2s2p43s3p2 

,   -   4.   * 

2p53a23p 

3 

2p53a3p2 1 

2pb3p3 

2s22p23a23p2 

23£,2p23a3p3 

2s22p23p4 

3     2' 
2s2pJ3s*3p* 

3 

3 

2s2p 3s3p 
?.*?.p33p4 

2p43a23p2 

3 

2p43a3p3 

2PV 
3 

2a22p3a23p3 

2a 2p3s3p 

2-.22r3j>5 

1 

No. of *G 
i    I 
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-1 \ 

Tabl= XV (con'd.) 

Configuration No. of S 

2»2pZ3s23p3 

2s2p**3s3p 

2«2n23p5 

2p33s23p3 

4 

3 

2p33s3p4 

2p33p5 1 

2a23a23p4 

2.23p6 
1 

i 

2«2p3s23p4 

2s2p3s3p 

2p23a23p4 
2 

3 

2p23s3p5 

2p23p6 i 

2s3s3p 
, - 2. 5 
tpji. jp 

1 

i 

3.23P
6 1 

1. No.  of *F° 

3 

1 

3 

No.  of *0 

1 

1 

Total 60 32 12 

of the neon atom which we are considering.   The method of getting at these numbers is a 

perfectly straightforward application of the vector model.   Thus for instance let us take the 

configuration 2s2p 3s 3p.   The set of four equivalent p electrons results in   S D P.   Com- 

bining this with the 3j> 2P° gives 2P°, 2(P°D0F°).  2* 4(S°P°D°).   The 3«2 lS has nc effect on 

the muitlplet structure.   Finally combining with 2s 23 leads to l* 3P°,  l' 3(P°D°F°), 

,*.=r-ng mil these multlplets, we find one   F°,  which is entered in Table 1, 3, 3. 5._n_o_ni 
\a  c   XJ   ,. 

XV.   The other configurations are handled in just smh ways. 

In Table XV. we have arranged the conflsuvations in order of the number of electrons 

exctt--u to the M shell (3s. 3p) In neon.    We see that there are two configurations with one 

excited electron, and 11     P. states arising from-two excited electrons.   These thirteen ex- 

cited states are the only ones having non-diagonal matrix components of energy to the ground 

state 2s 2p .  iind their diagonal energy will He lower than that of more highly excited states. 

Thuu it seems plausible that these thlrteer states will have *ho next largest coefficients, next 

to that of the ground state 2s 2p ,  In the linear combination of our 104 functions leading to 

the best representation of the ground state of the methane molecule.   One cotilu only establish 

whether ihls was the ease, by actually carrying through the calculation of the who!" problem. 
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This is a formidable problem, but it is hoped that it will stand as a challenge, to be under- 

taken by somebody in the not too distant future,  as th._ methods both of computing matrix com- 

ponents and of solving r.:;culsr equations become better worked out. 

We must pclni out, however, that though it is reasonable that the fourteen states which 

we have just mentioned should be the most important in the expansion of the ground state of 

the methane molecule at small internue;ear distances, this is by no means true at large dis- 

tances. The states which we have called 2s and ?s, for small internuclear distance, will 

really resemble the 2s and 3s wave functions of the neon atom, so that the one-electron energy 

of the 3s will lie a good deal above that of the 2s. As the nuclei of the hydrogen atoms get fur- 

ther -part, however, we must remember the rcai character of the molecular orbitals. We 

remember that really the function which we have called 2s is a linear combination of the car- 

bon 2s function, and the sum of the four hydrogen Is functions, the combination being such 

that ihe orbital has a maximum between the carbon and hydrogen atoms. The function which 

we have called 3s is a similar combination, but with a node between the carbon and tnc- four 

hydrogens. At '.he actual internuclear distance, the one-electron energy of the state which we 

have called 3s lies well above that which we have called 2s. since the former is anti-bonding 

and the latter bonding. At infinite inernuclear distance, however, the two states become de- 

generate with each other, just as the symmetric and antisymmetric molecular crbitals a t b 

of the hydrogen molecule problem become degenerate with each other at infinite internuclear 

distance.   In this limit, then, many of our 104 interacting states will reduce to the same dl- i 

agunal energy,  and it is r.o longer true that "excitation" of electrons from the 2s -like or 2p- 

like states to the 3s-like or 3p l.kc states vrtil produce any great Increase in diagonal energy. 
j 

We expect,  in other words, that a great many of our 104 slates will appear in the correct 

linear combination to represent the ground state at infinite Internuclear dist-.ncc. ,' 

The probable state of affairs may be expected to resemble that previously described 

for oxygen, as calculated by Meckler.   That is, at small internuclear distances wr may ex- 
' 2    f» 3 

p»ct the molecular orbital state 2s 2p ,  probably supplemented by the thirteen r'.twr states 

we have mentioned, to lead to a fairly good description of th=; ground state of the molecule. i. 

As the internuclear distance increases, however, we may expect s complete,  and rather sud- 

den, change in the nature of the coefficients multiplying our 104 functions in the expansion of 

the ground state,  changing over to the coefficients necessary to describe the molecule at in- 

finite internuclear separation, wltn all atom: in their ground states.    Very likely the lowest 

energy level, as a function of the Internuclear distances of the carbon-hydrogen pairs, will 

show a hump,  as in oxygen.   We iii«y expect the change in the wave function,  in this region of 

internuclear distances, to be so profound that no simple approximation based on the combined 

molecule will extrapolate well to infinite internuclear distance, or conversely no treatment 

based on the separated atoms and their multiplets will extrapolate wen to in* molecule,    me 

jfe writer suspects that no very great simplification of tne problem of the interaction of our 104 

states can be made,  consistent with giving a correct description of the behavior of the molecule 
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over all internuclear dist»:iren.    It seems likely,   however,  that if we chose just those states 

out cf the 104 which were neeo.««ary tc describe the uiuii»cule properly at infinite internuclear 

separation, and solved th<! secular problem between them.   we should have a good approxima- 

tion.    Thts number is substantially !esa than 104, *hcugh we shall not go through the compli- 

cated problem of counting to no:- just how many such states there are. 

5. Simplified Problems;   The F»hane Molecule 

The eise of methane, which we have just discu^-ed,  shouiu be enough io convince us 

that a complete treatment of configuration interaction is going to prove impracticable for any 

but the simplest molecules.    It is therefore worth asking if we may not be able to use simpli- 

fied treatments which will nevertheless suffice to give us a good deal of information about mo- 

lecular blnHing.   We may well ask,  could we not get fairly complete information about one of 

the bonds in the molecule, while being content with poor Information about the others?   The 

empirical evidence of the chemists all points in the direction of thinking that individual single 

covaleni bonds have a surprising degree of independence sf each other.   Could we not investi- 

gate a single bond, without having to consider the complira-.ions of the others? 

We can well believe that this could be done:  and while no cases have been worked out 

to teat the possibility, let us examine the case of ethane,  a fairly simple example, and see 

how we should treat it.    We remember that this molecule consists of two carbon atoms,  held 

together by a single bond, each carbon atom also being bound to three hydrogen atoms.   The 

three hydrogen atoms around a carbon, and the other carbon, form a roughly tetrahedr&l 

structure.   In other words, the environment of each carbon is something as it is in methane, 

only with one of the neighboring .iydroger.s being replaced by the other carbon atom.   It is 

clear, since this molecule is more complicated than methane, that a complete solution will be 

out of the question unless we can first find how to treat methane.   It is also clear that the 

carbon-hydrogen binding in ethane must be very similar to that in methane,  so that once the 

latter problem is solved, we should be able to draw immediate conclusions about the nature 

of ethane. 

Th» feature which ethane possesses, he never,  and which it does not share with 

methane, la the carbon-carbon bond.   The chemists have found that single carbon-carbon 

bonds in different moi«cule» are remarkably similar,  buLh iu ti-e equilibrium Sict.\r...c and in 

the dissociation energy.    Ti~« there is s. good hope that if we could investigate the carbon- 

carbon bond in ethane,  it would give us a good picture of carbon-carbon bonJs in more com- 

plicated molecules as well.   We therefore ask, is it not possible to treat the ethane molecule, 

introducing enough configuration interaction so that the solution will behuve correctly as the 

carbon-carbon distance is increased from the equilibrium distance to infinite separation,  but 

always keeping the hydrogens bound to the carbons?   This might well give us a good account 

of the carbon-carbon bond. 

It might also give us lurtner iruormatton.   The two triangular groups of hydrogens 
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CONFIGURATION INTERACTION IN MOLECULES 

attached to the two carbon atoms experience on.y a moderately small torque If they try to ro- 

tate with respect to each other.   The chemists suppose thai .he energy has a minimum when 

the two triangles are rotated 60   >*ith respect to each cth* •.  ana a maximum when they have 

the same orientation, for In the latter position the hydrogens on the two carbons are clc:,er to 

each other than tn the former,  and they may be expected to repel each other.   Bu°. the energy 

difference Is srr>al!.  and it has been well estimated by the chemists.   It seems likely that a 

treatment of the ethane molecule, of the sort we are going to propose,  might yield a fairly 

good value for this energy difference,  and hence be something that could be compared to ex- 

periment-    Either of these two extreme structures has simple symmetry properties,  and 

would not be hard to formulate.    As an example, we shall discuss the state that presumably 

would be the ground, state,  with the two triangles in an opposed orientation. 

Let us then examine this problem,  seeing what types of symmetry operations there are, 

the types of molecular orbitals, and the type of configuration Interaction necessary to describe 

the carbon-carbon bond properly.    If we examine the molecule,  we see at once that '.here are 

twelve different points in space which must bo equivalent to each other, In the sense that the 

potential energy must be equal at each:   two points symmetrically located with respect to each 

hydrogen atom.   To get from one such point to another,  we then have twelve symmetry opera- 

tions,  including the Identify.    These symmetry operations fall into six classes:   the identity; 

inversion through the midpoint between *he two carbons;  rotation through 1120° (two opera- 

tions):  rototmn tnrough t 12C° followed by Inversion (two operations);  collection In one of the 

three planes passing through the axis of the molecule and through hydrogen atoms (three op- 

erations)) reflection in one of these three planes followed by inversion.   31nce there are six 

classes, there must be six irreducible representations     Four of these must be one-dimen- 

sional and two two-dimensional, since the only way of writing 12, the total number it sym- 

metry operations,  as a Btt«a of six squares of Integers, Is as 1    + i    +1    +1   +2   • 2C. 

We can understand the nature of these Irreducible representations, by comparison with 

our earlier treatment of the ammonia molecule, In Section 6, Chapter 3.    There we h%^ the 

t»me rotations and reflections as symmetry operations, but not the combinations of these op- 

erations with the Inversion.    We saw In that section that It was useful to dlagonaiize the ro- 

tation operations about the axis of the molecule.    If we do this,  we see that the wave function 
2c in- ' * o must be multiplied by «*•"""' •* when we rotate through 120 ,  *h-i em * 0, II.    We set up 

three different sorts of combinations of the hydrogen Is functions having ttie.se properties: 

the combination* V(j) e * m"    s., where s, represent the hydrogen orbitals,  and where m « 

0,  11.    Under the reflection operations,  the function for m « 0 transforms Into itself,   while 

the function for m • 1 transforms into a midtlple of tiiai for m • - 1,  and vice versa.   Thus 

the combination corresponding to m » 0 forms a basis for r. one-dimensional representation 

of the symmetry group of the ammonia molecule,  while the two functions for mat! form a 

Lw.U for a t~o-dtr:cr^:1cr.?i represents'4.1?"     Out of these functions,   considering the ethane 

ui'jlc^-iv.  w£ r._/» -,-..-. —~h? r"*~* ?'.* ?•!!•""'•"< u« i*«c rui.^iior.^ or. the two H, £r--P-- 
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one '.>f theue combinations being of t>p« g. or even under th» inversion operation, and the oilier 

of type u, or ode undei Vt,e inversion. We thus have found i motions which form bases for two 

of th'; one-dimensional irreducible representations, and two of the two-dimensional represen- 

tations. We can also build up symmetry orbital: of tnese same types, as we «»w when we were 

dlscussnig ai.tmonia, by using carbon orbitals with m » 0, t 1, where m represents the com- 

ponent of orbital angulai momentum around the axis of the molecule. From each such orbital 

in one carbon atom,  we can build up a g and a u combination. 

There are stUl two one-dimensional irreducible representations to be accounted for, 

which we did not use in the «*umonia problem.    Basis functions,  or symmetry orbitals,  for 

these can be built up of hydrogen 2p orbltals,  rather than lr, orbiiala.    If we take 2p orbltals 

having th"ir rodal plane passing through the axis of the molecule,  and make up a sum of such 

orbitai.; on all three hydrogens,  we find that this resulting function transforms differently from 

any of those which we have considered, in that it is unchanged under Lite rotations, but changes 

sign on renecuon.    We can make g and u combinations of such functions on the two H, groups, 

leading to our two other one-dimensional Irreducible representations.   Similarly on the car- 
bon atoms,  we could get orbltals of the same symmetry by taking a fu»y?*<«n with m  = 3.  and 

using the angular function sin 3fe this function is unchanged when we rotate through 120 ,  and 

changes sign on reflection, thus showing the proper symmetry behavior.    Here again we can 

make g and u combinations of the functions on the two carbons.    It is clear that we shall not 

need symmetry orbltals of this type in the ethane problem,  since we have no hydrogen 2p func- 

tions, or carbon functions of high enough azimuthal quantum number to have m = 3. 

As we see from our group theory analysis, these irreducible representation: ore all 

ihat there are for the ethane molecule.   Now let us count up to see how many symmetry or- 

bltals of each type we can make up from the available atomic orbltals.    For m • 0,  we can 

build up both a g and a u combination from the carbon Is orbltals; from the carbon 2st from 

the carbon 2po*: and from the hydrogen Is orbltals.   When we solve our secular equation for 

the resulting molecular orbltals, we shall then expect to have a g and a u function made al- 

most entirely from carbon la orbltals; a g and a u with the charge concentration largest be- 

tween the carbons and their adjacent hydrogens,   and leading to carbon-hydrogen bonds; an- 

other g and u with nodes between carbon and hydrogen,  and thus being antlbonding as far as • 

the carbon and hydrogen are concerned;  and a g and u with major charge concentration be- 

tween the two carbons, the g function having a bonding nature,  but the u having a node mid- 

way between the carbons,  and thus being antlbonding.   Similarly for m  • - 1,   w«> ran build up 

a g and a u combination from the carbon 2pw orbitals,  and a g and « u iron-, the hydrogen 

orbltals.    We expect one type of molecular orbital, for either m a 1 or - 1,  and for either g 

or u '.,.*pc.  which shows bonding between the carbons and their adjacent hydrogens,  and an- 

other showing antlbondins.    None of these orbltals for m  • il it expected to have much charge 
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and u orbvtals arising I.-om the carbon is siaven.    Fuur mo«6 will b* la the JJ ana u orbital* 

of the m = 0 type leading to bonding between carbon and hydrogen,    Nui\e will be In the car- 

bon-hydrogen m « 0 antibondlng orbttals.    Eight will be in the m = i i g and u bonding or- 

uiiaia uetwecu c urbon and hydrogen*  none in the corresponding antibondlng orbital*.    This 

leaves two electrons over, to form the carbon-carbon uoi.il.   In the nclecular orMtni «*«tf« 

it la assumed that these will be in the remaining m « 0 orbital of the type leading to carbon- 

carbon bonding, the g orbital showing charge concentration between the carbon atom?, leav- 

ing the corresponding u orbital, which has a node between the carbons,  empty. 

We see, then, that we have just two electrons to form the carbon-carbon bend, both in 

a molecular orbital which in .-.vnuneti ic in the plane midway between the carbons;  and this 

situation la precisely similar to that met in the molecular orbital theory of hydrogen.    In the 

hydrogen problem, we remember that to give a correct account of what happened as the inter- 

nuclear distance increased, we had to take linear combinations of the state in which both el- 

ectrons were In the symmetric molecular orbital,  and of the other state in which both were ir 

the ant**ymmctrtc molecular orbital; both these states oi the molecule as a whole were of g 

type, or even under an inversion operation.   The situation is precisely the same here.   If we 

take linear combinations of the configuration we have just been discussing,  and of the other 

configuration which differs from It only In that the two electrons forming the < arbon-carbon 

bond are lifted up to the u-type molecular orbital which is antibondlng between the- two car- 

Wfi=,  the ccnfigurr.t-or. interaction problem wUl be like that in hydrogen, and as in that prob- 

lem the wave functions will behave correctly in the limit of infinite separation.   This simple 

c.citigvration interaction problem, then, might be e«p»c*«u to give a very good account of the 

carbon-carbon bond.   On the other hand, of course it would do nothing for the carbon-hydrogen 

bonds, beyond what an ordinary molecular orbital treatment can do.   To find what vould hap- 

pen when the hydrogens were removed would require a configuration interaction it least as 

complicated as in methane.   The hope would be that the** »*r««»ri configurations, required to 

describ . the carbon-hydrogen bonds properly, would have relatively small effect on the car- 

bon carbon binding.    Since this problem has not yet been calculated in detail,  we cannot evalu- 

ate th* question AS to whether this hope Is justified, but calculations which Dr. Meckler Is 

starting should give w» the answer. 

It la interesting to ask what tie two CK, radicals will be like, which are left when the 

carbon-carbon distance Increases to infinity    They have the same electronic structure as 

ammonia, only each has one less electron titan in ammonia.   We remember that In our dis- 

cussion of the ammonia molecule, wc found that there were two electrons, which we described 

as a lone pair, extending out along the direction opposite to the side where the hydrogens were 

located.   In the methyl radical. CHV there is only one electron in this orbital,  and it is the 
presence of this single electron which leads to the unsaturated nature of the radical     Wht.-n the 

two radicals come together to form the molecule,  these iwo electron* .'uim the ccvaicnt bo?vi. 

ju»l like the two electrons in two hydrogen atoms in the nydiogm I!:ULBCIU«.    The ".zlz-^zr 

. I 
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orbital picture of this bond,  and it* extension by the method of configuration, interaction to 

give a correct picture of *he limit of large lnterrucl£u.f distance,  should give us a good de- 

scription of single covaleni bonds in general. 
2L*iiiiar simplified trsatmentp can be given for other types of molecules,   and on ac- 

count of the great complication of a correct and complete treatment,  it is Hhely that they will 

have a great deal of use in studying configuration interaction.    Thus Craig'   ' has studied ibe 

double bond in ethylene by this method.    We remember lhat cthylcnc has  * orfcitals of r ant? 

u iyee, formed from a « orbital on atomic type on each carbon.    These orbltals hold just two 

electrons,  which go into the bonding iype of orbital in the molecular orbital description of the 

molecule.   However,  just as in hydrogen a/id in ethane,  we have another configuration of the 
same symmetry type U both these electrons are in the antibondir« type of orbital.   As in those 

cases, a configuration interaction between these two configurations is required to lead to re- 

sults which are correct In the limit o" targe internuclear distances.   Cralg has carried cut 

such a configuration Interaction, with good results.    Of course,  a proper treatment should 

consider also the ©--electron bond between the carbons, and this has not yet been done.   The 

combined problem of iiic double bond in eihylene, u*Uig Hit molecular orbital treatment for 

the C-H bonds as we have sketched for ethane, would yield a problem of the same order of 

magnitude as the oxygen molecule, which also has a similar double bond. 

6. The Directed OrbittJ and Valence Bond Methods 

We have carried the method of molecular orbltals,  and configuration Interaction be- 

tween determlnaotal wave functions made from these molecular orbitsis, far enough to see 

that 11 has several drawbacks.   It Is a straightforward method, includes other approaches as 

special c»**»: -nri «- certainly the method to be preferred when it can be carried through. 

V.everthelejs, the first obvious drawback Is that even with rather simple molecules, such as 

methane. ;he number of interacting configurations is so great as to be unmanageable.   It 

would be quite out of the question to use it in its complete form for any but the simplest mole- 

cules.   The other serioas drawback is that it is not suited to display the Independence of dif- 

ferent covaient bonds, which the chemists find empirically, and which we have mentioned in 

the preceding section    The •Uplifted procedure described In the prec -o*ng section for treat- 

ing the carbon-carbon bond in ethane suggests that we might be able to go further with the 

same »ort of treatment.    In this way we are led to a method of treating molecules by two de- 

vices, the directed oruUals and tl.« valence bond wave functions, which has had e certain 

amount of success.    Unfortunately, ths uses which have been made of these methods have often 

been half-empirical,  and not well justified,  and they have fallen into disrepute.   This bad 

reputation is justified, if the methods are used in the conventional way.   Nevertheless they 

have something to contribute to molecular theoiy, aW in the present section we iihail point 

'D.  P. Cralg,  Proc. Roy. Soc. fLundo/ij AZOO.  c'.Z (i'JSO). 

-165- 

EMSf. 



CONFIGURATION INTERACTION IN MOLECULES 

out the nature of these methods, their history,  and then shall try to see how they fit into the 

typ- **r approach which we have been usinf in the preceding section* 

These methods had their origin in ar. effort to apply the Heitler-London method to 

more complicated molecules t*»an hyrM-»gpn.    In n-:-t':r.iiinr    the sirr,pi.~ molecules held together 

by single covalont bords,   such as ammonia,  meihane,   and ethane,   which we have been dis- 

i;us-*-.'!g,  certainly do not seem different in their essential structure from hydrogen.    We have 

emphasized that chemical evidence Indicates that the various bonds ore rathei independent of 

each other.    For instance,  when a hydrogen atom is rent ved from mei'nane to form t» methyl 

radical, and thi* radical combine" with another one to form ethane,  very little change is pro- 

duced in the remaining earl o;.-hydrogen bonds.    In turn,  if some of the hydrogens of the eth- 

ane molecule are replaced by other atoms, for instance a halogen,  this still makes little 

change in the remaining bonds of the molecule.    Knowing the geometrical shape of these mole- 

cules,  we certainly gain the Impression that the carbon atom in some sense ha.-, four electrons 

sticking out from it in the tetrahedral directions,  and that each of these electrons,  rather in- 

dependently of the others, is capable of forming a single covalent bond with another atom, the 

bond having many of the features of the hydrogen-hydrogen bond as described ">y heitler and 

London.    If the electrons of carbon really do stick out in some such tetrahedrul way,  it should 

be possible to describe this in the language of wave functions.   Certainly the s and p wave 

functions of carbon do not have this property,  and the combinations of the carben and hydrogen 

wave functions which we have described in our molecular orbital treatments of tiiese mole- 

cules have no great tendency toward localization:  each of the wave functions contributes to the 

charge density in the neighborhood of a number of bonds,  and conversely the charge concerned 

in a given bond is made up from a number of wave functions. 

With these facts in mind, it was pointed cut in the earl/ <lmjt> CM s>wlecuXar theory by 

Pauling' ' and by the present writer^ ' that it is possible to build up one-electron wave func- 

tions, or orbitals, which have the desired behavior, by combining s and p wave functions. 

If we start with a p , p .   • , and s function, which we may symbolize merely by p , p , p , x      y      z x      y      z 
a,   we may then moke four linear combinations of the form o MP.   + n,yP    + a^p    + 014a, 

where 1 takes on the values 1.  2,  3, 4.    We can rnqutre that these four combinations be nor- 

malized and orthogonal; normalization implies four conditions in the a's, and orthogonality 

six (each of the six angles between pairs of the four vectors must be a right angle).   Thus, 

sinre we have sixteen a's,  ».nd ten conditions on them,  we aXill have six degrees of freedom. 

One of the combinations, like that written above,  represents the sum of a p function pointing 

in the direction of the t!»«v-uuu«u«iaa&l vector of components o.., a.^, a.., and an s func- 

tion,  and this sum can be set up so as to enhance the p function on one side of the nucleus, 

and diminish it on the other,  no that the orbital will extend out strongly in one direction.    Such 

7L.   P*.uling,   Proc. * Acad. Sci. _14,   359(1928);   Phys.  Rev.   37.   1185(1931). 
gJ. C. Slater,  Phys. nev.  37,  381 (1931). 
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orbitals are called directed orbitals.    Wc cannot have our four orbitals directed in arbitrary 

directions in space,  for we do not have enough constants at our disposal.    II takes two quan- 

tities lo determine the direction of a vector,   aid hence eight for the four directed orbitals, 

whereas we have only six constants at our disposal.    We may use these,  for instance,  to de- 

termine the directions of three of the orbitals    in which case the fourth is specified for us. 
In particular,  we m»y choose the a's so that the four orbitals extend out along the four 

tetrahedral directions from a carbon atom,   and in that way we get something which resembles 

th» tetranedral atom of the chemists.    We must notice 'hat the atom is not real.'y tetrahedral. 

Thus if we zssign one electron to eacn of these four orbitals, and find the total charge density 

of these electrons, th-j result is spherical, just as the charge density of tliree electrons,  in 

the p , p , p   states respectively,  is spherical.   Nevertheless, each orbital is concentrated x     y      z 
In a direction which can be chosen to point toward one of tha hydrcg«»n atoms in a methane 

molecule, and it seems attractive to suppose thai somehow the binding in methane consists of 

a covalent bond formed between each of these directed orbitals and the corresponding hydrogen 

atom, these bonds lacing formed like the Heitler - London bond in hydrogen,  and being essen- 

tially independent of each other.   la a similar way, we can set up three directed orbitals in 

ammonia, pulming toward the three hydrogens,  and two in water,  pointing toward the two hy- 

drogens,  and may apply the same sort of argument there.   The justification for thinking that 

the bonds are independent of each other arises simply because the overlapping of the directed 

orbital forming a given bond,  with the other orbital ('or Instance,  a hydrogen orbital) cooper- 

ating to form the bond, is much greater than the overlapping of orbitals not pointing toward 

each other. 

The general Ideas suggested In the preceding paragraph are rather vague.    However, 
(9) the present v.ri*.*rx ' suggested a method, based on the determinants method and the general 

line of argument outlined In previous chapters, for expressing then; more precisely.    The 

Idea was to formulate something like the Heitler-London method,  only to st* up a wave func- 

tion which would describe   not just one covalent bond,  but all the covalent bonds !n the mole- 

cule.    Let us Illustrate by the water molecule,  the simplest one involving two covalent i  >nd&. 

For convenience, we shall assume that the angle between the two OH bonds is the tetrahedral 

angle,   109   vthough the argument does not depend at all on this assumption,  whtch Is only ap- 

proximately trus for the actual rr.c.ccule).    if «»e h»ve •»»<« tetrahedral angle,  we can use the 

same tetrahedral directed orbitals which we should use for methane,  two of them being di- 

rected toward the hydrogens,  which we car. denote by orbitals 1 ar.d 2,  and the remaining two 

being in the other tetrahedral directions,  and being denoted by 3 and 4.    We shall then build 

up the wave functions of the problem ov.t of these four directed orbitals,  the oxygen is orbital, 

and the Is orbitals on the two hydrogens. 

Our problem Is to assign electrons to these various orbitals (instead of to the molecu 

9J.  C S'ator,   Phys. Rev.  38,   1109 (k'»3i). 
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lar orbitals which *c have always used previously), to set up determinants! wave functions 

corresponding to these assignments of electrons,   and to make suitable combination- cf de- 

terminants to d*«crlbe the ground state of the molecule.    In the water molecule.   «•»• rmve ten 

electrons.    We shall assume that In al.1 determinants which we consider,  two of these elec- 
trons occupy the Is oxygen orbitals,  and two occupy each of the orbitals 3 and 4 which do not 

extend toward the hydrogens.    These form the description,  in this language, of the lone pairs 
of *\4>rtr>\r>* oii2«»"«!ed by the m.-^Vrule.    This leaves two electrons for forming each covalent 

bond.   We expect,  then, that each covalent bond will be much as in hydrogen.    We remember 

that In hydrogen, If we have the two atomic orbitals a and b, the Heitler-London state is de- 

termined from two configurations:   one that in which orbital a is associated with a spin •,  or- 

bital b with a spin -, and one which orbital a has spin -, b has spin +.    If we set up the de- 

terminants! wave functions for the two-electron problem describing these configurations,  we 

remember that the sum of these determinants represents the c omponert of the triplet state 

having sero component o* spir «long the axis. *hlle the difference of the determinants repre- 

sents the singlet state.    We ask,  cannot we bet up such a predetermlnated combination of de- 

terminants In the present case,  representing both covalent bonds? 

Sines there ire four electrons to be assigned to the four orbitals forming the two bonds, 

and since If we follow the Heltler -London method we shall always assign just one electron to 

each erbitci.  v?e have the same problem of spin degeneracy of four electrons which we have 

already discussed in Section 2 of the present chapter.   For Mg - 0,  we have six possible as- 

signments of spins to orbitals.   If we use the same table as In that section, but now denote 

our orbitals as o h., o,t h,, to stand for the oxygen and hydrogen orbitals forming bonds 

1 and Z, then these aiisignxne-its of spin are given In Table XVI.   We now remember that ac 

Table XVI 

h. State 

1 

2 

3 

4 

s 

6 

"1 

•f 

• 

*1 '? 

cording to our study of tha problem of spin degeneracy of four electrons, we fo>md that ?»••«-• 

were two singlet states.    We can get at them In the following way:   we set up the combinations 

1 + 6,  2 • 5,  and 3 + 4 of the states above.   The sum of these represents the quintet function) 

but any two linear combination* of these functions which are orthogonal to each other,  and or- 

thogonal to the quintet, may be taken &s representing singlets.    Let us see if we can form by 

Inspection a singlet function which corresponds to the desired covalent binding. 

If we had only (he two function*- o. and h,, be'.v.ea.n which a bo-wi wn* to be formed,  we 

} i 

II 
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I 

shou.u aet up tit« iwo < oiligurattons •- and -+,   and we know that th<: singlet state would be the 

difference of tnese two determinants-    A similar thing wovld occur if we only had the functions 

Oy and h?.    We row rctice that we u«ui »e> up :he combination of functions 2-4 + 5-3.    This 

in the first place is a combination of (2 t 5) und (3 + 4), and can be shown to be orthogonal to 

the quintet,  so that It represents * singlet.    Next,  it has In each case a • and - spin on each 

bond,  which it would not do if the states i and 6 were included.    The functions 2 and 4,  which 

correspond to w<<* ~ame spins on o, and h,,  out opposite arrangements of spin on o. and h., 

appear with oppouite sign.   So do the function 3 and 5,  which have the same relationship to 

each other.   Similarly, the functions 2 and 3 correspond to the same arrangement of spins on 

o. ana h.. but different assignments to o   arid h,, and they appeal with opposite signs, as do 

4 and 5.    There is thus » symmetry chout this function 2-4+5-3,  which suggests the 

XIaltler -London ground state wave function.   It Is this particular combination of determinants 

wave functions which is called the valence bond wave function for this problem. 

The virtue of this valence bond wave function Is shown if we consider a limiting case 

in which the two bonds are really Independent of each ether.   That is, we assume thi.t the pair 

of functions o. and h. on the one hand, o, and h, on the other, are so completely independent 

of each other that any integral of energy or orthogonality Integral between functions some of 

which belong to the one pair, some to the other, vanishes.   In this case, It Is easy to work 

out the matrix component of energy with respect to the valence bond wave function,  and we 

find that we are led exactly to the problem of '.wo independent valence bonds, each handled by 

the Heitler-London method.   The reader can verify this for him»*»lf, taking for instance the 

case where o j and h j refer to two hydrogen atoms forming a molecule,  and o, and h, refer 

to two other hydrogen atoms forming a molecule so far from th# first that there is no physical 

interaction between them. 

The use of the methods of directed orbitals,  and of valence bond wave functions, from 

this point on. has generally been entirely unjustified, on account of unwarranted assumptions. 

It has been assumed that the directed orbitals are sufficiently Independent of each other so 

that this result, whi^h we have just mentioned, would hold in real molecules, the total energy 

being the sum of two-energies representing the two csv&l-ini bonds, each being similar to the 

energy of hydrogen as predicted by Heitler and London.   The unwarranted assumptions have 

generally extended further lh«n this:   very often the overlap integrals met in the Heitler-Lon- 

don method liave been disregarded, though we saw in Chapter 2 that they were actually large. 

A large literature has been built up based on tiese assumptions,  ana it can hardly be regarded 

as anything but an empirical development,  without theoretical justification.   If we actually set 

up the valence bond wave function, and compute its diagonal energy,  we find, as th* writer 

showed in his original paper on the subject, lha< it is extremely complicated,  involving thrao- 

and four-center integrals of complicated type,  which are by no means negligible in compari- 

son wifh the terms which resemble the calculation of the Heitler-London method.   It neexaa 

not irJikeiy that a correct calculation oT tfcd energy of this val^nc^-hond wave futictlor. wou'd 

i 
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yield «* fs'.vly good value for ihe energy of the moiecule,   but very few calculations have been 

made without the unwarranted neglect of terms which wc h»vp> mentioned.    The reason is part- 

ly the difficulty of calculating three- and four -center integrals,  which are only now coming to 

be calculated with any accuracy. 

In spite of the crudeness of the way in which the valence bond method has generally 

been used,  still an extensive literature has grown up nr-nnnd seme o:.p;.et5 of its formalism. 

These aspect?; are largely those concerned *ith the solution of the sHti degeneracy problem. 

If we return to TaMe XVI, we have fw\ thot the combination of functions 2-4 + 5-3 yields 

a valence bond function indicating bends between orbital:, o. and h.,  and between o. and h,. 

If we just regard these as four orbital? of a general form,  there ttre two other ways in which 

we could draw the bonds between them.    Tb»se are indicated in Fig.  7,  where we show the 

orbltals as points,  the bonds as lines connecting pairs of points.    We 

see that we can draw the bonds just as well between o, and o,,  h. and 

ii,j  or between o. and h,,   o, and h..    We can set up combinations of 

our function* I  - 6 of Table XVI which express these other valence 

bond functions.    Thus the combination expressing the case where the 

l'. jp^ bonds are between o. and o,,  and between h. and h-,  is -1+3+4-6, 

pi _    y and that expressing the case where the bonus arc between o. and h .. 

Possible ways of draw-   °i and hj. Is I - 2 - 5 4 6.   We have,  then, three valence bond func- 
ing valence bonci.i in tlons,  each representing a singlet state; and yet we know that there 
problem of four orbltals. 

are only two singlet states concerned in the problem.    This would in- 

dicate that our three functions are not linearly independent,  and this is in fac* the case     We 

can see this at once by adding them:   we have (2 - 5 - 4 + 5) + (- 1 + 3 + 4 - 6)  .   ,1 - l - 5 4 6) 

« 0.    in other words, since the three functions add to zero,  any one of them is a linear com- 

bination of the other two. 

If,  tnen,  we make two orthogonal linear combinations of two of these functions,  say of 

the ones (2-3-4+5) and (-1 + 3 + 4-6),  these functions can ,'unn the starting point for a 

calculation from which we shall find the two singlet states, and if we find diagonal and non- 

diagonal matrix components of energy between these two functions,  wc shall have a quadratic 

secular equation for these two singlets.   In other words,  the valence bond function for;;: a j 

starting point for the problem of spin degeneracy.   They are not a very convenient aia* ting 

point, for they are IHJ<. o« ihogonai to each uuwr.    They clearly cannot be.   since the three vo- 

lence bond functions are linearly dependent,  they therefore represent three vectors lying in a 

plane, and if we have three unit vectors In a plane adding to «.erc,  ii these do,  we ear. she 

easily that these vectors mast m»>* angles of 120° with each other,  so that no two of them are 

orthogoi ai.   It In not very nard to set up orthogonal linear corr blnations of them, however,  so 
*hat this Is not a very great diffici»ity in the way of using this raeth<r»d to r,olve spin degeneracy. 

It is not,  However, the simplest way to do it. 

Part of the literature of valence bond wave functions has been devoterl to the general j 
i 
i 
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question d ho- ~.«ny of the possible w^s of drawing valence bond functions are linearly In- 

dependent, as two of the three possible waj-a are iinea-iy independent In the problem of foy 

electrons.    Rumer.  Whelapd,  and many others,   have contributed to this stu.Jv.  and the ref- 

erences are given in the bibliography.   It turns out that tnere is a simple and general rule 

telling how many linearly independent valence bond wave functions there are In any particular 

case.   We make a diagram like that of Fig.  7, bu'. emit a.iy sets of t^nds whose corresponding 

lines cross each other,  k.s the bonds between o, and h., Oj and h,,  cross each other In the 

figure.    The remaining sets of honds (two sets in our case} form a linearly Independent set. 

Since we have seen that this method of valence bond wove functions forms one way of solving 

the problem of spin degeneracy. In particular for finding the singlet states (which alone are 

expressible in terms of valence bond functions) we see that this type of formalism can have 

value for other problems than the application to covalent binding, though as we have mentioned 

earlier this does not seem to be the simplest way to handle problems of spin degeneracy. 

The formalism of which we have bjen speaking, however. In spite of Its legitimate 

applications, has often been used in the literature in the unjustified approximate way wnlch we 

have already mentioned.   The interaction of the various wave functions derived from valence 

bond methods, which corresponds to the Interaction uf the various singlet states of a molecule 

to form the ground state, is one of the Interactions which Pauling has termed resonance.   A 

large literature has grown up in which the corresponding »ecular equations are solved,  but 

with the crudest assumptions possible concerning the corresponding matrix components of 

energy.   We have already mentioned the type of approximation which has been made in com- 

puting the diagonal matrix component of energy with respect to a valence bond function, with 

neglect of non-orthogonality,  and with the assumption that different boids are largely inde- 

pendent of each other.   The same sort of approximations have been made In computing the 

non-diagonal matrix components of energy between the various valence bond wave functions, 

and the resulting secular equation has then been solved.   It is clear from the remarks that 

have been made already that the writer does not feel that these approximations made in the 

i 
i 

• I 
i 

calculation of the matrix components arc valid enough to give any quantitative significance to 

the results cl tbese calculation*. I i 

We have mentioned that one reason why all these approximations have been made Is 

slmpiy the difficulty of making the exact calculations.   The method which we are cu'Uning is 

essentially a g*netoiizatlon of the Heltler-London method,  and we have seen In Chapter 2 that 

this method Is much less convenient than the method of conftgnratinn interaction using r.c 

iecultx orbltola, in that It deals with non-orthogonal atomic and non-orthogonal deter rolnantal 

function*.    We may reasonably ask, > ould we not introduce a configuration interaction method 

islng directed oru^itals   possessing the advantages of the Heltler-London method in that It 

treated the various bonds •• H*<ng largely Independent of each other, but i>Ob»es*uig uie con- 

venience of dealing with orthogonal orbitala?   In the next section we shall show iha*. something 

af this sort may well ->e possible, though It has net yet teen tented enough to make sure of its 
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I 

! 

validity. 

Quite aside from these formal difficulties connected with the extension of the Heitler- 

Loncon method based on directed orbitals and valence oond functions,  there are certain funda- 

mental shortcomings of the metJwl,  which must be corrected in order to gvt anything cio*ely 

approaching the truth.   These shortcomings ar'se from ihe neglec. cf loniv. or po'*.r stales of 

the molecule.   In Chapter 2,  we have aeen that inclusion of ionic states cf the H, molecule, in 

which one (.torn forms a positive ion   the other a i.egaiive ion,  manes a practically negligible 

improvement with respect to the Hsitler-London calculation,  in which this is disregarded.   In 

a heteropolar naolecule. however,  one in which the bonds are formed between unlike atoms, 

we expect a much greater effect to arise from the polai states.    Thus, 1* we take an extreme 

case nuch as the HF molecule, the calculation corresponding to the Heltler-London method 

would suggest that the molecule should be unpolarized, the hydrogen atom always carrying a 

single electron,  and the fluorine atom being always neutral.    We can well Imagine,  however, 

on account o'.' the lirge dipole moment which this molecule is known to possess, that a polar 

configuration, formed from a proton and a negative fluorine Ion,  might represent a configura- 

tion which would be represented rather strongly in the actual ground state of the molecule. 

The straightforward valence bond calculation, based on the sort o? spin degeneracy problem 

indicated in Table XVI, takes no account of such polar stated, and this is a serious shortcom- 

ing of the method. 

It is, of course, entirely possible in principle to extend the valence bond method to the 

case where we include polar stat»*: just as it is possible in hydrogen to consider interaction 

with ionic states in the framework of the Heltler-London theory.   If we include ell possible 

polar states,  and consider the interaction, using the vslence bond method of setting up unper- 

turbed singlet wave function, but then solving a secular equation between all states of the same 

symmetry properties,  we shall end up with just as general a solution as that found by configura- 

tion interaction starting with molecular orbitals,  and the answers will be identical.    The 

method Is likely to be more complicated,  however,  on account of the nc:; -ortnogonui nature of 

the valence bond functions,  and if such a complete configuration interaction calculation is to be 

made,  a straightforward calculation using molecular orbitals is probably the simplest method, 

just as the problem of cofiflgui «tlon interaction in hytiiogctt ia more conveniently set up in 

terms of molecular orbitals, or of orthogonalized atomic orbitals, than in terms of Heltler- 

London non-ionic and ionic states. < • 

A major reason for the inconvenience of the Heltler -London method has been pointed 

o'lt in Chapter 2:   the Heltler-London functions representing ncn-lonic and loaic states are by 

us means orthogonal to each ether, and in fact as the Ir.tc — uclear distance decreases they be- 

come much more nearly identical than orthogonal function*.    3ui-h a situation always greatiy 

complicates the mrnerlcai use of turn functions for delving problem*, of con figuration interaction. 

These orthogonality difficulties, which are so serious that tn* actual calculations using Heltler- 

f.nndon functions trcludbur io«ic state* are practically Impossible to carry out with any mol«- 
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cule of any degree of complication, have simply been glossed ovir by the writers who use this 

method,  hidden by their unjustified approximations involved in their calculations of matrix 

components. 

".  Directed Orbitals and Conftgm «Uoi Interaction 

The criticism which we have given in ine prer jdlng section indicates the reasons for 

feeling that tne metnoa 01 directed orbitnls, coupled with the use of valence bond wave func- 

tions, does not form a useful approach to the problem of moleculer structure.   However,  cer- 

tain features of the method, or of the reasoning behind '.is original suggestion,  remain valid, 

and we shall ask u> the present section how it could be adapted to the method of configuration 

interaction, with possible use to simplify that method.    We can see at the outset the form 

which any simplification must take.    Whatever orbital functions *e start with, we shall find 

the same number of interacting configurations to lead to any particular state of the molecule. 

It might be,  however,  that by uslnf particular orbital:,  such as the directed orbitals, we 

might find that the wave functions ol some of these interacting configurations were represented 

in the linear combination representing the ground state with small enough coefficients so that 

they could be disregarded.   IJ we could be sure from the outset that this would be the case, we 

could disregard these configurations from the beginning,  and thus effectively reduce the num- 

ber of interacting configurations. 

Wi.'n thl«. in mind, let us analyze the way in which we would apply the method of di- 

rected orbitals to configuration interaction problems, and see if such a simplification Is likely. 

V/e can investigate the general situation without going into details, and we shall do this first, 

before looking Into the precise way of carrying out the method.   We note In the first place that 

the valence bond method, In which we use only one valence bond wave function without con- 

figuration Interaction (that is, without resonance), gives us a unique wave function for the 

molecule.    We cannot hope to do this if we are using configuration interaction.    We remember 

that in the molecular orbital treatment of hydrogen, using configuration Interaction, we needed 

two wave functions, In one of which both electrons were in the symmetric molecular orbital, 

and in the other of which both were in the antisymmetric orbital.   Interaction of these two led 

to the ground state.   If the atoms had not been identical,  we should have needed still another 

wave function, that in which one electron was in the bonding, and the other in the antlbondlng, 

orbital.   The reason for the three Is that In hydrogen this last combination results in a    £, 

iu'iu a    V   state, the first two combinations in two    £    states,  and the £   and T   states are 

non-combining! whereas with unlike atoms, there la no Inversion symmetry corresponding to 

the distinction between the g -isA u stntes, so that we have three singlets which c<"> «n com- 

bine with each other.   Thus,  we cannot hope to treat a bond between unlike atoms by configura- 

tion interaction, without using three configurations per bond,  and solving the resulting secular 

equation for the singlet stales (which normally will be the ground state). 

We might expect, then, JhwT we could &V. eoi'-.e iiort ui" solution of  ho covol»nt bcndl.ig 

J! 
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problem by u~ing three configurations pet* tend,   in some sense.    We note at the outset that 

this can mean a t<» cat reuuciiuw in   w nuiaLer uf configurations,   -Oiupdreii Lo the molecular 

orbital method.    The reason is that WJ a~e tpciily assuming that we shall assign two electrons 

to each single bond,   whereas the genernj configuration interaction problem,   if we set it up in 

terms of directed orbitals,   would include the possibilities that we have every number from 

zero to four electrons In oach bond,    in other words,  the real simplification which seems 

plausible to us, if we are thinking in terms, of directed orbitals,  arises from the probability 

that (he configurations corresponding to any numbers of electrons per bond different "rom two 

will appear in the final configuration interaction with small coefficients. 

We cannot tell whether this situation really holds or not,  without testing it out in some 

actual cast.    It is for this reason thai iue calculation which Koster and Schweinler are carry- 

ing out for v/a*rr,   which we have mentioned earlier, can be very valuable.    They will get the 

exact solution of the complete configuration interaction problem.    From the resulting ground 

state wave function, it will be easy to find the contributions from those states corresponding 

to just two electrons per bond (and therefore just four lone pair electrons).    If these slates 

really lead to a practically correct wave function, we should have a good deal of confidence 

tliat a similar simplification held in general,  while if the assumption fails significantly to be 

justified for water, we should expect It to fail in other cases as well,  and in that situation  the 

method of directed orbitals would have no particular merit in simplifying the problem.    The 

answer cannot be given until the actual case Is worked out. 

Let us proceed to sec just how the mei-h^d of directed orbitals could be incorporated 

Into our procedure for handling configuration inieracticn.   V* c rhsll start by considering the 

case of methane,  since this is an interesting case in which the simplification reciting from 

the directed orbital method might be quite profound.    We shall first describe how a set of or- 

thogonal directed orbitals could be set up.  suitable for use as a starting pent for the con- 

figuration Interaction problem; then we shall describe how to carry out that configuration in- 

teraction. 

n describing these orthogonal directed orb'tals,  we could start with the type of or- 

bitals described tn Section 6.    We could set up four linear combinations of the carbon 2s and 

2p atomic orbitals, directed along the four tetrahedral directions.    We could call these com- 

bination* c.,  <:,.   r.,   c«.    Then we should have four hydrogen Is orbitals,  vhich we could 

call h., h>,  h,, h..   These are not convenient orbitals to use,  however, for though the carbon 

orbital^ c. .  . c^ are ortnogonsl tu each c her.  by their method of construction,  they are r.ot 

orthogonal to the hydrogen orbitals,  end these in turn are not orthogonal tc each ether.   Om 

first step must be to aet up orthogonal linear combinations of these functions,  v/hicr h&v*: tne 

required tetrahedral symmetry.    This can be done in an infinite number rf ways,  and Ui get 

a unique way,   and one adapted to the problem,  it is better not to start with these carbon and 

hydrogen orbitals at all,  b jt Instead to describe the procedure in terms or me molecular or- 

bitals. ! 
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7.  DIH KC?ED ORBITALi? AND CONFIGURATION rNTERACTION 

»> ^to.rmoer that wh«*n we were discussing the molecular orbitais :or mctn»n<?,   we 

showed that they nad symmetry properties similar to s sr p   functions of an atom.    Thai is, j 

we hod • on»-dimensional irreducible representation whose '.unctions transformed ir.tc each 

other under any of the operations of the tetrahedral group,   and a ibri-e-dimpnsional irreducible 

representation who"- functions transformed into each ether   like the three degenerate p func- 

tions.    As symmetry orbitals of the 3-like type,  we nad orbltals formed from the carbon Is, 

carbon 2s,  and the combination of the hydrogens which had proper symmetry,  cu.J the result- 

ing molecular orbiials resembled the carbon Is,  a bonding combination of the carbon 2s and 

the hydrogens, and an antibondtng combination.    Similarly the molecular orbitals of the p-llke | 

tyne wers a h-r.r'lng and --. antibonding combination of carbon and hydrogen orbitals.   Now we 

can take the bonding orbitals of «-like and ^-llke type,  and make four linear combinations of , 

these by just the same procedure used to set up the directed orb'*als of carbon, which we de- \ 

scribed In the preceding section.    Similarly we can take the antibonding orbitals of s-llke and 

p-like type,  Mini make four directed combinations.   The result will he a 1 s-llke orbital, four 

bonding directed orbitals,  and four antibonding directed orbitals,  all orthogonal to each other. 

Since the molecular orbitals are approximated as linear combinations of atomic orbitals,  and 

these directed orbitals we have just been describing are linear combinations o> molecular or- 

bitals. they are also linear combinations 0/ atomic orbitals,  and could be described directly 

in that language, but the procedure we have just sts'ed is the simplest way of visualizing them. 

These functions,  of the type we have just described,  are related to the ordinary directed or- 

bitals c., c,,  c,, c^,  and to the hydrogen orbitals h.,  h,, h.,  h4> much as the hydrogen mo - 

lecular orbitals a t b are to the atomic orbitals a and b in the hydrogen problem. 

Before using these bonding and antibonding directed orbitals, let us see a little more 

In detail just what their relation is to molecular orbitals.   The molecular orbitais are set up 

In such a way as to form basis functions for irreducible representation! of the symmetry 

group of the molecule.   They diagonallr.e the one-electron energy of the self-consistent field. 

The directed orbitals do neither of these things.   The four tetrahedrally directed orbitals form 

a basis for a reducible representation of the symmetry group]  we can get at the lrred .olble 

representations out of which it is composed by undoing the linear transformations which pro- 

duced the directed orbitals out of the   s- and p-type molecular orbitals.    Furthermore,  the 

directed orbitals do tct dlagonallze the one-electron HamU Ionian.   If we solve a secular equa- 

tion to diagoiv«lUe Uiis Ham Utonian. of course we come back to the s- and p-type oibltals, 

with their appropriate one-electron energies.    We era easily find the non-diagonal matrix com- 

ponents t>* ener «jy between these directed orbltals.  but shall postpone this until a later tlm e, 

when we shall take up the theory of such functions much nr ore in detail. 

The characteristic which these directed orbitals have, from the pvua of view of group 

theory,  is that under every symmetry operation of the group,  each directed orbital either 

transforms into itself,  or into another directed orbital.   Thus,  ihe iv.o-:'old or three-fold ro- 

tations of the tetrahed- d group interchange the directed orbital:..    Orbitals which have these 
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properties are called equivalent crbltaJs In recent work by ;.,enn«rd-Jones'        8>."d collabora- 

tors.    Their general theory,  and the matrix components of energy between them,  have been 

discussed In a recent paper by Koster.' The great impoi i«••>.<.- of cuch orbitals comes not 

so much in molecules,  useful as» they are there,  but in crystals,   and for this reason we post- 

pone their discussion until we are dealing with crystals.    There the Wannler function,  orbitals 

localized on single atoms of the crystal, form examples of equivalent orbitals which trans- 
form into each other by the symmetry operations which are translations In the JUUU e.    These 

functions are invaluable in discussing properties of a crystal which take place in a localized 

volume,  and we shall postpone our general discussion until we are concerned with that problem. 

Let us now go back to the directed bonding and antibonding orbitals in methane.    We 

can use them, just as well as the original molecular orbitsds, in setting up the problem of 

configuration interaction.    S-ct UR nrs* observe Uuit the dctermlnanta] wave function repre- 

senting the molecular orbital ground state will be just the same using directed orbitals that 

it is using molecular orbitals.   In terms of molecular orbitals, the molecular orbital ground 

state arises when two electrons are in the Is carbon orbital, two in the s-type bonding orDitaJ, 

and two each in the three p-type bonding orbitals.   But the directed bonding orbitals are linear 

combinations of the s-type and p-type bonding orbitals.    We know that a determinants wave 

function is not affected by introducing new orbitals which are linear combinations of the or- 

bitals out of which it In constructed,  and that is just the situation which we have here. 

In other words,  as far aa the molecular orbital ground state is concerned, there is no 

real difference whether we use molecular orbitals or directed bonding orbitals.   There is a 

formal difference, which luas been pointed out by Leonard -Jones and nis collaborators, in the 

references made above.   This formal difference arises because the various coulomb and ex- 

change Integrals between directed erbitsis look q.'.ite different from those between molecular 

orbitals, and it is natural that,  since the directed orbitals are much more concentrated, these 

coulomb and exchange integrals between electrons* in the same directed orbital will be much 

larger than if we use molecular orbitals, while the integrals between electrons in different 

directed orbitals will be smaller.   Lennard-Jones and his associates see in this fact the justi- 

fication of the use of directed orbitals, feeling that in this way the concentrated nature of the 

covplent bond is expressed-   Th<; writer feels that the more real justification of the use of di- 

rected orbitals may come when we ore considering configuration interaction,  in the wav to ue 
described immediately. 

When we come to considering configuration Interaction by means of directed orbitals. 

wo must proceed rather differently from the way we did when we uaed molecular orbitals,  on 
account of the different symmetry properties.   We krow that we are looking for singlet con- 

figurations which possess the full symmetry of the group, transforming into themselves under 

i°J.  a.   Lennard-Jones,  Proc. Roy. Soc.  (London) A198,   14 (1949):  J. E. Len»ard-Jcues 
and J. A. Pople,  Proc. Roy. Sec. (London) A202,   TW(i9:>0). 

":1G    *     Koster,   Phys.  Rev.  89.  67 (i*!>3). 
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Table XVII (con'd.) 

IV 1 2 1111 

al bl 
lz b2 tt3 b3 a4 b4 

i 3. •» I j 1 1 1 

14. L 2 2 1 1 

15. ? 2 2 2 

Of the fifteen alignments of electrons to bonds in this table, those in which each or- 

bital has two electrons,  and those in which there are just two orbitais with one electron each, 

will each lead to one singlet.   Those with four orbitais with one electron each will lead to two 

singlets,  as always ii. a spin degeneracy of four electrons.   Those with six orui'.als with one 

electron each will lead to five singlets,  as in the spin degeneracy of sir electrons, but closer 

examination of the wave functions shows that only two have the correct symmetry for the 

ground state,  und those with eight orbitais with one electron each will lead to 14 singlets, of 

which three prove to have the correct symmetry.   Thus there will be 22 singlets of the cor- 

rect symmetry arising from the configurations tit Tab'.* XVII.   We have thus achieved a great 

reduction compared with the total of 104 configurations; but we must remember that this re- 

duction is only justified if the coefficients multiplying the remaining 82 configurations,  which 

represent cases with different numbers of electrons on the various bonds, are really small, 

and this can be verified only by computation. 

it *» not impossible ths* the reduction in the order of configuration interaction can be 

carried considerably further than this.   Let us consider one of the configurations tn Table 

XVH, which contains spin degeneracy between more than two electrons; for example,  state 4, 

involving spin degeneracy between four electrons.   It is possible that there is really some 

virtue In the vsls**** bond function, which assigns the spins as if bonds were being termed be- 

tween certain pairs of electrons.   It is possible, in other words, that of the two singlet func- 

tions which can be set up from the spin degeneracy problem in configuration 4,  the valence 

bond function assigning the Interaction to the bonds between a. and b,,  ana between a, and l>.. 

will come in with a considerably larger coefficient than the ciuer siuglet function v/hich we 
could form, orthogonal to this valence bend function.    If such u «!t.u«»Hrn were to hold in gen- 

eral, it might prove to be true that tn epch of the con'iju. uUor.s in Table XVII showing spin 
degeneracy,  the mos    .mportant contribution would ~orrie from th*- valence bond function.   and 

in that c»se we might be able to disregard the others,   an<1 use only lb configurations,  one 

formed f*otn each of the entries in Tabls XVII.    If this proved t« he no««»hle.  it would b« a 

useful reduction indeed in the order of the configuration interact lor.   We note th it all those 

configurations in Table XVII show'.ng spin degeneracy involve one electron ,r>. « bondlnjj orbital, 

one in an ant bonding orbital, of tin; same bond.   Tnus, these ate the configurations which 

«ould be cori«p]etely m;.i»t»ing if tne bonds had th» Inversion sym-netry characteristic of hydro- 

gen,  so that configurations wl<h one election   n an antlboncing and one in a be  ding orbital 

were non-cuuiuining with confipur at ions in vl icn both electron? were bonding,   or b~*h anti- 

176- 

I     li 



DIRECTED ORBITALS AND CONFICURA HON INTERACTION 

vending.    This might suggest that In the actual case the coefficient* of nil these ranfigu:atlons 

were small,  so thnt we should be doing less violence to the problem than otherwise by using 

only the valence bonu contiguration- 

As we have emphasised,  this section is highly specilaiive,  merely suggesting direc- 

tions in whirh one might look to find configurations winch did net contribute greatly to the con- 

figuration interaction problem.    Calculation will have to be made,  on simple cases, to see 
whether any of these suggestions are Justified enough to m«k» *uoh methods useful.    We hi-ve 

mentioned that the calculatirsr. r.cw being made for water may well furnish a case for testing 

these assumptions.    Let us therefore examine how the water problem would look,  when set up 

in t«rms of directed orbitals,  so as to see what we are to look for. 

In the first place,  If our hypothesis t» correct that the la.poi tant configurations are 

those in which each !>ond has just two electrons,  we should conclude at once that in the impor- 

tant configuration* there should be two w electrons,  in the notation which we used earlier in 

discussing water.    Thus in Table XXI, we should conclude that the only important conJigura- 
tions were those arising from the states marked 4,  8.  9,   10,   11,   12,   13,   14,   \S,   16,   17. in 

which inert axe two « electrons.   These eleven states result in twelve out of the eighteen 

configurations of the molec«l»:  and the first test of the calculations will be to see if the coef- 

ficients of ihe remaining six configurations are really small. 

Proceeding further,  we can get a table of ccnf<durations for water,  like the table which 

we have rr-s.de for methane, by simply leaving out the columns marked a., b.,  a., b. in Table 

XVII, and by Including only the first six states from that table.   These six states lead to seven 

singlets? out of the twelve.   The remaining five singlets arise from the assignments of elec- 

trons to bonds shown in Table XV 111 

Table XVIH 

Configurations for Water, Involving More cr 
Less than Two Electrons per Bond 

*1 

2 

1 

2 

1 

2 

1 

2 

1 

L 

2 

a2 

1 

1 

if (he coefficients of the five co;.figurations described in this table prove to be smaJ,  we shall 

"* justified in our hvoothesia that the important configurations are those tn which mere are 

just two electrons in each covalent bond,  and should feel a certain amount of assurance in us- 

ing this rarae hypothesis in more complicated molecules,   in which ihe campion configuration 

Interaction £ robl»«r was too ha-d to so*ve, 

L:n>'l dome .v  h i*dt ?.-. tbis is made for the method >:«ink directed orbitals.  we rrast 
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regard this method with a good deal of suspicion.   It is by no means obvious that this method, 

or Lti fact jury r«uii>lU*i»»U>it of t'.«: gcrwiaw .uRthuu of eonfigtu atton interaction which has yei 

been suggested,   will really prove to have trough quantitative vaiiuiiy lu justify its use.    We 

may only hope,  however, thit some such simplification will be found as a result of the detailed 

calculations which are now being ma**- 

!     It 

i : 
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I BIBLIOGRAPHY 

In the .«5tipr»»pdlri£ pages we present a bibliography of papers ->n the theory of tht; elec- 

tronic structure of molecules.    The writer hopes tt.at this bibliography WLLI be useful,  but 

nevertheless presents It with a good deal oi apology.. it Is a result of rapid compilation,  and 

in a great many case: papers have beer included,  or in some cases excluded,  without taking 

time to assess adequately whether tiiey really belonged or not.   The bibliography was con- 

I 

I 
i 

structed largely by the simole method of going through a given paper,  noting the references 

made by the author,  going through those references,  noting their references,  and so on.   This 

method is likely to lead one rather far into sidelines,  and there are a good many papers listed, 

largely on the application of molecular orbltals to detailed chemical problems,  which are 

rather far from the main topics of this report.   Nevertheless the reader of the report may 

want to explore some of the di» ections in which progress has been made,  and this bibliography 

should help him in doing so. 

The general field included,  as stated above,  is the theory of the electronic structure of 

molecules.   Very few experimental papers have b«en Included (except perhaps by oversight) 

except those in which there were interesting applications of theory.    Papers cr. the nuclear 

vibrations of molecules have not in general been included,  unless there r.een.ed some particu- 

lar reason why they might be of interest to readers of the report.    Simil arly papers on the 

theory of ntoml^ «n#MrS   nn general quantum mechanics, and on the theory of the electronic 

structure of solids, have not been included,  except in a few special cases, though it is hoped 

to include * bibliography similar to the present one, dealing with solids,  in the companion re- 

port to this, which will d«?al with the theory of sclids.    When there was a question of including 

a given paper or not,  however,  the general tendency has been to include it.    It was frit that 

this would probabl} detract less from the usefulness of the bibliography than to ox?it potential- 

ly uaefiil papers. 

The writer is well aware *hf>? the method used for compiling tac bibliography is liable 

trt i»ort in wry tmnnr-tont ?!TI!*S<" ••«•    As a conspicuous example,  it has not led to irclnsion of 

•*• Russian literature,  ar. omission which the writer regrets,  and does not justify on any other 

ground* than that he has put in all the time on the preparation of the bibliography that ne can 

afford at the moment, and feels that the result, though imperfect, may yet be better than noth- 

ing.    He would be much obliged if readers would inform him of conspicuous omissions.   They 

are practically sure to be a result of oversight,  and not of a conscious desire to slight any 
work. 

Jl 
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